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A STUDY ON DEGENERATE (p, q, h)-BERNOULLI

POLYNOMIALS AND NUMBERS†

HUI YOUNG LEE

Abstract. This paper introduces a more generalized form of the degener-

ated q-Bernoulli polynomial, termed (p,q)-Bernoulli polynomial, and presents

their properties. Various properties including symmetry were investigated,
yet properties of symmetry were not identified. However, in the process,

another property was discovered, and the purpose is to introduce this newly

found property.
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1. Introduction

The well-known traditional Bernoulli polynomials, which have been known
for a long time, are defined by the following generating function.

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
(cf. [1-13]). (1.1)

When x = 0, the value of the nth Bernoulli number is denoted by Bn(0) = Bn.

We first introduce the basic concepts and sevaral exponential functions.
Let n, q ∈ R and q ̸= 1. Jackson defined the q-number as below:

[n]q =
1− qn

1− q

and limq→1[n]q = n. Also we introduce the (p, q) numbers as below:
Let n, p, q ∈ R, p and q are not 1, and p ̸= q,

[n]p,q =
pn − qn

p− q
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and limp→1,q→1[n]p,q = n.

For [n]q! = [n]q[n− 1]q · · · [2]q[1]q and [0]q = 1, q-binomial is defined by[
n
r

]
q

=
[n]q!

[n− r]q![r]q!

and limq→1

[
n
r

]
q

=
(
n
r

)
.

In this paper, we use the (p, q)-binomial to be extended as belows:
For [n]p,q! = [n]p,q[n − 1]p,q · · · [2]p,q[1]p,q and [0]p,q = 1, (p, q)-binomial is

defined by [
n
r

]
p,q

=
[n]p,q!

[n− r]p,q![r]p,q!

and limq→1

[
n
r

]
1,q

=
(
n
r

)
.

Many mathematicians have studied various exponential functions. Let’s ex-
amine how these diverse exponential functions have evolved.

et is well known classical exponential function. Also, since et is an analytic
function on complex number field, et is capable of series expansion as belows:

et =

∞∑
n=0

tn

n!
.

eq(t) is a q-exponential function defiened as

eq(t) =

∞∑
n=0

tn

[n]q!
.

For real q > 1, the function eq(t) is an entire function of t. For 0 < q < 1,
eq(t) is regular in the disk |z| < 1/(1− q). Also, the inverse of eq(t) is eq−1(−t),
i.e., eq(t)eq−1(−t) = 1.

ep,q(t) is a (p, q)-exponential function defiened as

ep,q(t) =

∞∑
n=0

p(
n
2)tn

[n]p,q!
and Ep,q(t) =

∞∑
n=0

q(
n
2)tn

[n]p,q!
.

Here, [n]p,q = pn−qn

p−q .

(1 + λt)
1
λ is a degenerated exponetial function and lim

λ→0
(1 + λt)

1
λ = et.

More recently, Burcu Silindir and Ahmet Yantir [14] have generalized expo-
nential function with Definition 1.1 and 1.2 in the following way.
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Definition 1.1. For 0 < q < 1, one define the generalized quantum binomial,
(q, h)-analogue of (x− x0)

n, as the polynomial

(x− x0)
n
q,h =

1 if n = 0,
n

Π
i=1

(x− (qi−1x0 + [i− 1]qh)) if n > 0,

where x0 ∈ R (see [8],[10]).

When q → 1 and h → 0, the generalized quantum binomial approximates the
ordinary binomial as belows:

lim
(q,h)→(1,0)

(x− x0)
n
(q,h) = (x− x0)

n.

In this paper, (x− 0)n(q,h) is denoted as (x)nq,h for convenience.

That is, (x− 0)n(q,h) = (x)nq,h = x(x− [1]qh)(x− [2]qh) · · · (x− [n− 1]qh).

Definition 1.2. For 0 < q < 1, one define the degenerated q-exponential func-
tion, denote by

eq,h(x : t) =

∞∑
n=0

(x)nq,h
[n]q!

tn,

where (0)0q,h = 1 and eq,h(0, t) = 1.

Using Definition 1.1 and 1.2, we have already defined the q-Bernoulli polyno-
mials and numbers as follows, and we intend to extend these. (see [8]).

Definition 1.3. For 0 < q < 1 and t ∈ R, we define degenerate q-Bernoulli
polynomials and numbers by the following generating functions

t

eq,h(1 : t)− 1
eq,h(x : t) =

∞∑
n=0

βn,q(x : h)
tn

[n]q!

and

t

eq,h(1 : t)− 1
=

∞∑
n=0

βn,q(h)
tn

[n]q!
.

When q → 1 and h = 0 it is equal to the classical Bernoulli polynomial.

In this paper, the concept is extended more generally to define (p, q)-binomials
and (p, q)-exponential function as follows.



1148 H.Y. Lee

Definition 1.4. For 0 < p ≤ 1 and 0 < q < 1, we define (p, q)- bionomial,
(x)p,q,h as below.

(x)np,q,h =
n

Π
i=1

(pi−1x− [i− 1]p,qh)

= x(px− [1]p,qh)(p
2x− [2]p,qh) · · · (pn−1x− [n− 1]p,qh).

From Definition 1.3, we get

(x)np,q,h = (x)nq
p ,

h
p
, lim

h→0
(x)np,q,h = p(

n
2)xn and lim

p→1
(x)np,q,h = (x)nq,h.

Definition 1.5. For 0 < p ≤ 1 and 0 < q < 1, one define the degenerated
(p, q, h)-exponential function, denote by

ep,q,h(x : t) =

∞∑
n=0

(x)np,q,h
[n]p,q!

tn =

∞∑
n=0

p(
n
2)(x) q

p ,
h
p

tn

[n]p,q
,

where (0)0p,q,h = 1 and ep,q,h(0, t) = 1.

Here are some important properties of the (p, q, h)-exponential to be used in
this paper.

ep,q,h(x : abt) =

∞∑
n=0

(x)np,q,h
anbntn

[n]p,q!

=

n∑
n=0

x(px− h)(p2x− [2]p,qh) · · · (pi−1x− [i− 1]p,qh)

· · · (pn−1x− [n− 1]p,qh)
anbntn

[n]p,q!

=

n∑
n=0

ax(pax− ah)(p2ax− [2]p,qah) · · · (pi−1ax− [i− 1]p,qah)

· · · (pn−1ax− [n− 1]p,qah)
bntn

[n]p,q!

=ep,q,ah(ax : bt).

Theorem 1.6. Let n be a positive integers, 0 < p ≤ 1, 0 < q < 1 and k ∈ Z.
We have

ep,q,h(x : abt) = ep,q,ah(ax : bt) = ep,q,abh(abx : t).
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2. A degenerate (p, q, h)-Bernoulli polynomial and it’s properties

Definition 2.1. For 0 < p ≤ 1, 0 < q < 1 and t ∈ R, we define a degen-
erate (p, q, h)-Bernoulli polynomials and numbers by the following generating
functions

t

ep,q,h(1 : t)− 1
ep,q,h(x : t) =

∞∑
n=0

βn,p,q(x : h)
tn

[n]p,q!

and

t

ep,q,h(1 : t)− 1
=

∞∑
n=0

βn,p,q(h)
tn

[n]p,q!
.

When p, q → 1 and h = 0 it is equal to the classical Bernoulli polynomial.

By the Definition 2.1,

t

ep,q,h(1 : t)− 1
ep,q,h(x : t) =

∞∑
n=0

βn,p,q(h)
tn

[n]p,q!
×

∞∑
n=0

(x)np,q,h
tn

[n]p,q!

=

∞∑
n=0

[
n
k

]
p,q

βn−k,p,q(h)(x)
k
p,q,h

tn

[n]p,q!
.

(2.1)

By the Definition 2.1, equation (2.1) and comparing their coefficients, we can
derive the following theorem.

Theorem 2.2. Let n be a positive integer, 0 < p ≤ 1, 0 < q < 1 and k ∈ Z.
We have

βn,p,q(x : h) =

n∑
k=0

[
n
k

]
p,q

βn−k,p,q(h)(x)
k
p,q,h.

By the Definition 2.1

t2

ep,q,h(1 : t)− 1
ep,q,h(x : t) =t

∞∑
n=0

βn,p,q(x : h)
tn

[n]p,q!

=

∞∑
n=0

βn,p,q(x : h)
tn+1

[n]p,q!

=

∞∑
n=1

[n]p,qβn−1,p,q(x : h)
tn

[n]p,q
.

(2.2)

Furthermore, by slightly modifying the generating function introduced above,
the following result is obtained.
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t2

ep,q,h(1 : t)− 1
ep,q,h(x : t)

=
t

ep,q,h(1 : t)− 1
ep,q,h(x : t)

(
t

ep,q,h(1 : t)− 1
ep,q,h(1 : t)− t

ep,q,h(1 : t)− 1

)
=

t

ep,q,h(1 : t)− 1
ep,q,h(x : t)

t

ep,q,h(1 : t)− 1
ep,q,h(1 : t)

− t

ep,q,h(1 : t)− 1
ep,q,h(x : t)

t

ep,q,h(1 : t)− 1

=

∞∑
n=0

βn,p,q(x : h)
tn

[n]p,q!
·

∞∑
n=0

βn,p,q(x : h)
tn

[n]p,q!

−
∞∑

n=0

βn,p,q(x : h)
tn

[n]p,q!
·

∞∑
n=0

βn,p,q(h)
tn

[n]p,q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
p,q

βn−k,p,q(x : h)βk,p,q(x : h)

)
tn

[n]p,q!

−
∞∑

n=0

(
n∑

k=0

[
n
k

]
p,q

βn−k,p,q(x : h)βk,p,q(h)

)
tn

[n]p,q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
p,q

βn−k,p,q(x : h)βk,p,q(x : h)

−
n∑

k=0

[
n
k

]
p,q

βn−k,p,q(x : h)βk,p,q(h)

)
tn

[n]p,q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
p,q

βn−k,p,q(x : h) (βk,p,q(x : h)− βk,p,q(h))

)
tn

[n]p,q!
. (2.3)

Equation (2.2) and equation (2.3) are expressions obtained using the same
generating function. Comparing their coefficients, we can derive the following
theorem.

Theorem 2.3. Let n be a positive integer, 0 < p ≤ 1, 0 < q < 1 and k ∈ Z.
We have

βn−1,p,q(x : h) =
1

[n]p,q

n∑
k=0

[
n
k

]
p,q

βn−k,p,q(x : h) (βk,p,q(x : h)− βk,p,q(h)) .
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By Definition 2.1,

∞∑
n=0

βn,p,q(x : h)
tn

[n]p,q!
=

t

ep,q,h(1 : t)− 1
ep,q,h(x : t)

=
1

1− t

t

ep,q,h(1 : t)− 1
ep,q,h(x : t)(1− t)

=
1

1− t

t

ep,q,h(1 : t)− 1
ep,q,h(x : t)− 1

1− t

t2

ep,q,h(1 : t)− 1
ep,q,h(x : t)

=

∞∑
n=0

tn ·
∞∑

n=0

βn,p,q(x : h)
tn

[n]p,q!
−

∞∑
n=0

tn+1 ·
∞∑

n=0

βn,p,q(x : h)
tn

[n]p,q!

=

∞∑
n=0

(
n∑

k=0

βn−k,p,q(x : h)
tn

[n− k]p,q!

)
−

∞∑
n=0

(
n∑

k=0

βn−k,p,q(x : h)
tn+1

[n− k]p,q!

)

=

∞∑
n=0

(
n∑

k=0

[n]p,q!

[n− k]p,q!
βn−k,p,q(x : h)

tn

[n]p,q!

)

−
∞∑

n=0

(
n∑

k=0

[n]p,q!

[n− k]p,q!
βn−k,p,q(x : h)

tn+1

[n]p,q!

)

=

∞∑
n=0

(
n∑

k=0

[n]p,q!

[n− k]p,q!
βn−k,p,q(x : h)−

n−1∑
k=0

[n]p,q!

[n− 1− k]p,q!
βn−1−k,p,q(x : h)

)
tn

[n]p,q!
.

From the given equation, we can derive the following theorem.

Theorem 2.4. Let n be a positive integer, 0 < p ≤ 1, 0 < q < 1 and k ∈ Z. We
have

βn.p,q(x : h)

=

n∑
k=0

[n]p,q!

[n− k]p,q!
βn−k,p,q(x : h)−

n−1∑
k=0

[n]p,q!

[n− 1− k]p,q!
βn−1−k,p,q(x : h)

=

n∑
k=0

[
n
k

]
p,q

[k]p,q!βn−k,p,q(x : h)−
n−1∑
k=0

[
n− 1
k

]
p,q

[n]p,q[k]p,q!βn−1−k,p,q(x : h).

The following property to be discussed is one discovered by the author while
investigating symmetry. Although previously sought-after symmetric properties
couldn’t be found, a similar result resembling symmetry was obtained, hence it
is introduced.



1152 H.Y. Lee

(1)
abt2ep,q,ha

(x : at)ep,q,hb
(x : bt)

(ep,q,ha
(1 : at)− 1)(ep,q,hb

(1 : bt)− 1)

=
at

ep,q,ha
(1 : at)− 1

ep,q,ha
(x : at)× bt

ep,q,hb
(1 : bt)− 1

ep,q,hb
(x : bt)

=

∞∑
n=0

βn,p,q

(
x :

h

a

)
(at)n

[n]p,q
×

∞∑
n=0

βn,p,q

(
x :

h

b

)
(bt)n

[n]p,q

=

∞∑
n=0

(
n∑

k=0

an−kbk
[
n
k

]
p,q

βn−k,p,q

(
x :

h

a

)
βk,p,q

(
x :

h

b

))
tn

[n]p,q!
.

(2)
abt2ep,q,ha

(x : at)ep,q,hb
(x : bt)

(ep,q,ha
(1 : at)− 1)(ep,q,hb

(1 : bt)− 1)

=
bt

ep,q,ha
(1 : bt)− 1

ep,q,ha
(x : at)× at

ep,q,hb
(1 : at)− 1

ep,q,hb
(x : bt)

=
bt

ep,q,ha
(1 : bt)− 1

ep,q,hb
(
a

b
x : bt)× at

ep,q,hb
(1 : at)− 1

ep,q,ha
(
b

a
x : at)

=

∞∑
n=0

βn,p,q

(
b

a
x :

h

a

)
(bt)n

[n]p,q!
×

∞∑
n=0

βn,p,q

(
a

b
x :

h

b

)
(at)n

[n]p,q!

=

∞∑
n=0

(
n∑

k=0

akbn−k

[
n
k

]
p,q

βn−k,p,q

(
b

a
x :

h

a

)
βk,p,q

(
a

b
x :

h

b

))
tn

[n]p,q!
.

Comparing the coefficient on both sides, we get following:

n∑
k=0

an−kbk
[
n
k

]
p,q

βn−k,p,q

(
x :

h

a

)
βk,p,q

(
x :

h

b

)

=

n∑
k=0

akbn−k

[
n
k

]
p,q

βn−k,p,q

(
b

a
x :

h

a

)
βk,p,q

(
a

b
x :

h

b

)
.

From this, we can obtain the following theorem.

Theorem 2.5. Let n be a nonnegative integer, a, b, h ∈ R and 0 < p ≤ 1,
0 < q < 1. We have

n∑
k=0

an−kbk
[
n
k

]
p,q

βn−k,p,q

(
x :

h

a

)
βk,p,q

(
x :

h

b

)

=

n∑
k=0

akbn−k

[
n
k

]
p,q

βn−k,p,q

(
b

a
x :

h

a

)
βk,p,q

(
a

b
x :

h

b

)
.
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When we substitute abx for x in the above theorem, we obtain the following
result.

n∑
k=0

[
n
k

]
p,q

an−kbkβn−k,p,q(abx :
h

a
)βk,p,q(abx :

h

b
)

=

n∑
k=0

[
n
k

]
p,q

an−kbkβn−k,p,q(b
2x :

h

a
)βk,p,q(a

2x :
h

b
).
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