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Abstract. In the theory of undirected simple graphs, we introduce the
concept of adjacent topological spaces and analyze the minimization of

open sets within these spaces. We define the continuity property of map-

pings between two adjacent topological spaces associated with undirected
simple graphs and explore the connections between homeomorphic adjacent

topological spaces and isomorphic graphs. Additionally, we investigate the
compactness of adjacent topological spaces and examine the relationship

between the connectedness of these spaces and the graphs.
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1. Introduction

In discrete mathematics, the graph theory is considered as topic for giving
solutions of some problems. Many researchers studied some relations between
graph theory and theory of topological spaces as constructing topological spaces
on the set of vertices or the set of edges of simple graphs or directed graphs.
This constructing is taken from the notion of a graph model and the digital
image. In 2013, Amiri [6] introduced the subbasis family SG = {Ax : x ∈ V }
such that Ax is the set of all adjacent vertices of x to construct a topology on
the set of vertices of simple graph G = (V, E). In 2018, [1], Abdu and Kiliciman
introduced topological spaces associated with simple graphs, called the incidence
topological space (V, TIG), of a simple graph G = (V, E) without isolated vertex
has a subbasis SIG which is given by SIG = {ends(ε) : ε ∈ E(G)}. In [2], they
used the directed graphs G = (V, E) to introduce two constructions of topologies
on the set E , called compatible edge topology and incompatible edge topology.
In 2022, [4], Othman et. al. used directed graph G = (V, E) to introduce the
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notion of pathless directed topological space on the set of vertices V. In 2023,
[5] and [4], Othman, Ayache and Saif introduced the L2−directed topological
spaces for directed graphs on the set of vertices V.

This paper consists four sections. In Section 2, we give the notion of adjacent
topological space for any undirected graph. We study minimalizing of open sets
in these spaces with simple graphs. In Section 3, We introduce the notion of con-
tinuity property for adjacent topological spaces for two simple graphs and give
the relations between the homeomorphically of adjacent topological spaces and
the isomorphically for graphs. In Section 4, we study the compactness property
for adjacent topological spaces and explain the relations between connectedness
of adjacent topological spaces and graphs.

A graph G consists of a non-empty set V(G) of vertices, and a set E(G) of edges
and we write G = (V(G), E(G)). A graph G = (V(G), E(G)) is called a finite
graph if both sets V(G) and E(G) are finites. If the edge ε ∈ E(G) joins the two
vertices x and y in V(G) then we write Jε = {x, y} and also we say that x and y
are incidents with ε. A two different edges ε1 and ε2 in E(G) are called adjacent
edges if Jε1 ∩ Jε2 ̸= ∅. An edge ε ∈ E(G) is called an isolated edge if there is no
edge ε′ ∈ E(G) such that Jε ∩ Jε′ ̸= ∅, that is, there is no edge in E(G) adjacent
with ε. A vertex x ∈ V(G) is called an isolated vertex if there is no edge in E(G)
incident with it. For the edge ε ∈ E(G) we mean by A(ε) the adjacent set of ε
given by

A(ε) = {ε′ ∈ E(G) : Jε ∩ Jε′ ̸= ∅}
and by ∂(ε) we mean the degree of ε, that is, the number of adjacent edges with
ε. Note that ∂(ε) = |A(ε)| − 1, where |A(ε)| is the number of elements of A(ε).
For the vertex x ∈ V(G) we mean by I(x) the incident set of x given by

I(x) = {y ∈ V(G) : Jε = {x, y} for some ε ∈ E(G)}
and by ∂(x) we mean the degree of x, that is, the number of elements of I(x).
A graph G = (V(G), E(G)) is called connected graph if we can travel a long the
edges from any vertix into any other vertix. In a graph G = (V(G), E(G)), the
loop is edge that starts and ends at the same vertex and the multiple edges
are edges between two vertices. A simple graph is a graph without loops and
multiple edges. A graph G = (V(G), E(G)) is called locally finite if ∂(x) is finite
number for all x ∈ V(G). All graphs in this papers assumed locally finites.

2. Main results

3. The adjacent topological spaces

Definition 3.1. Let G = (V(G), E(G)) be any graph. Define the family of subsets
of E(G) as follows:

AG = {A(ε) : ε ∈ E(G)}.
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Figure 1

The adjacent topological space of a graph G is a pair (E(G), TAG), where TAG is
a topology on E(G) induced by a subbasis AG.

Example 3.2. The graph G = (V(G), E(G)) in Figure(1) is given by

V(G) = {x1, x2, x3, x4, x5, x6, x7}

and

E(G) = {ε1, ε2, ε3, ε4, ε5}.
The subbasis AG is given by

AG = {A(ε1),A(ε2),A(ε3),A(ε4),A(ε5)}

where

A(ε1) = {ε1, ε2}, A(ε2) = {ε1, ε2, ε3}, A(ε3) = {ε4, ε2, ε3}

A(ε4) = {ε4, ε3}, and A(ε5) = {ε5}.
Then the adjacent topology space of a graph G is given by

TAG = {∅, E(G), {ε2}, {ε3}, {ε5}, {ε1, ε2}, {ε2, ε3}, {ε2, ε5}, {ε3, ε4}, {ε3, ε5},

{ε1, ε2, ε3}, {ε2, ε3, ε4}, {ε1, ε2, ε5}, {ε3, ε4, ε5}, {ε2, ε3, ε5}, {ε1, ε2, ε3, ε4},
{ε1, ε2, ε3, ε5}, {ε2, ε3, ε4, ε5}}.

Example 3.3. The graph G = (V(G), E(G)) in Figure(2-A) is given by

V(G) = {x1, x2, x3, x4, x5, x6}

and

E(G) = {ε1, ε2, ε3}.
The subbasis AG is given by

AG = {A(ε1),A(ε2),A(ε3)}



1094 Howida Adel AlFran

where
A(ε1) = {ε1}, A(ε2) = {ε2}, and A(ε3) = {ε3}.

Then the adjacent topology space of a graph G is given by TAG = P (E(G)), where
P (E(G)) is the power of E(G), that is, the family of all subsets of E(G). This
topology is called the discrete topology on E(G).
The graph G = (V(G), E(G)) in Figure(2-B) is given by

V(G) = {x1, x2, x3}
and

E(G) = {ε1, ε2, ε3}.
The subbasis AG is given by

AG = {A(ε1),A(ε2),A(ε3)}
where

A(ε1) = A(ε2) = A(ε3) = E(G).
Then the adjacent topology space of a graph G is given by TAG = {∅, E(G)}. This
topology is called the indiscrete topology on E(G).
The graph G = (V(G), E(G)) in Figure(2-C) is given by

V(G) = {x1, x2, x3, x4}
and

E(G) = {ε1, ε2, ε3, ε4, ε5, ε6}.
The subbasis AG is given by

AG = {A(ε1),A(ε2),A(ε3),A(ε4),A(ε5),A(ε6)}
where

A(ε1) = A(ε2) = {ε1, ε2, ε5, ε6},
A(ε3) = A(ε4) = {ε3, ε4, ε5, ε6},

A(ε5) = {ε1, ε2, ε3, ε4, ε5},
and

A(ε6) = {ε1, ε2, ε3, ε4, ε6}.
Then the adjacent topology space of a graph G is given by

TAG = {∅, E(G), {ε5}, {ε6}, {ε5, ε6}, {ε1, ε2}, {ε3, ε4}, {ε1, ε2, ε5}, {ε1, ε2, ε6},
{ε3, ε4, ε5}, {ε3, ε4, ε6}, {ε1, ε2, ε5, ε6}, {ε3, ε4, ε5, ε6}, {ε1, ε2, ε3, ε4},

{ε1, ε2, ε3, ε4, ε5}, {ε1, ε2, ε3, ε4, ε6}}.

A graph G = (V(G), E(G)) is called 2-simple graph if it is simple graph with
|V(G)| > 3 and 0 < ∂(x) < 3 for all x ∈ V(G). It is clear that in 2-simple graph,
∂(ε) < 3 for all ε ∈ E(G).

Theorem 3.4. Let G = (V(G), E(G)) be any simple graph and ε ∈ E(G). Then:
(1) If ε is an isolated edge then {ε} is an open set in (E(G), TAG).
(2) If G is 2-simple and ∂(ε) = 2 then {ε} is an open set in (E(G), TAG).
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Figure 2

Proof. (1) Let ε be any edge in E(G). If ε is an isolated edge then only Jε∩Jε ̸= ∅,
that is, A(ε) = {ε}. Hence by definition of AG, {ε} ∈ AG ⊂ TAG , that is, {ε} is
an open set in (E(G), TAG).
(2) Since G is 2-simple and ∂(ε) = 2 then there are at least two ε′, ε′′ ∈ E(G)
such that ε′, ε′′ ∈ A(ε). Then we have

A(ε′) ∩ A(ε′′) ∩ A(ε) = {ε}.

Hence by definition of AG, {ε} ∈ AG ⊂ TAG , that is, {ε} is an open set in
(E(G), TAG). □

Corollary 3.5. Let G = (V(G), E(G)) be any 2-simple graph. If ∂(ε) = 2 for all
ε ∈ E(G) then the adjacent topological space (E(G), TAG) is a discrete.

Proof. It is clear from theorem above that if ∂(ε) = 2 for all ε ∈ E(G) then
{ε} is an open set in (E(G), TAG) for all ε ∈ E(G). That is, (E(G), TAG) is a
discrete. □

Remark 3.1. The coresspounding adjacent topological space will be a discrete:

(1) The cycle graph with n vertices, denoted by Cn and n > 3, is a simple
graph such that the number of vertices in Cn equals the number of edges
and every vertex has degree 2.

(2) A complete graph with n vertices, denoted by Kn and n > 3, is a simple
graph in which every pair of distinct vertices is connected by a unique
edge.

(3) A complete bipartite graph, denoted by Kn,m and n,m > 1, is a graph
whose vertices can be partitioned into two subsets V1 with n vertices and
V2 with m vertices such that no edge has both endpoints in the same
subset, and every possible edge that could connect vertices in different
subsets is part of the graph.

Corollary 3.6. Let G = (V(G), E(G)) be any simple graph. If ε is an isolated
edge for all ε ∈ E(G) then the adjacent topological space (E(G), TAG) is a discrete.
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Proof. It is clear from Theorem(3.4) that if ε is an isolated edge for all ε ∈ E(G)
then {ε} is an open set in (E(G), TAG) for all ε ∈ E(G). That is, (E(G), TAG) is
a discrete. □

Alexandroff space [8], is a topological space such that arbitrary intersection
of open sets is an open set.

Theorem 3.7. Let G = (V(G), E(G)) be any simple graph. The adjacent topo-
logical space (E(G), TAG) is Alexandroff space (e.g., arbitrary intersection of open
sets is an open set).

Proof. Let {A(ε) : ε ∈ E ⊆ E(G)} be the collection of elements of AG. We will
prove that ∩ε∈EA(ε) is open set. If ε′ ∈ ∩ε∈EA(ε) then ε′ ∈ A(ε) for all ε ∈ E.
Hence ε ∈ A(ε′) for all ε ∈ E. That is, E ⊆ A(ε′). Since G is locally finite then
E is finite. Hence ∩ε∈EA(ε) is open set. □

Let G = (V(G), E(G)) be any simple graph and ε ∈ E(G). Since the adjacent
topological space (E(G), TAG) is Alexandroff space, MO(ε) denotes the smallest
open set containing ε which is the intersection of all open sets containing ε.

Remark 3.2. It is clear that from Theorem(3.4) if the edge ε is an isolated or
∂(ε) = 2 in a 2-simple graph G = (V(G), E(G)) then MO(ε) = {ε}.

Theorem 3.8. Let G = (V(G), E(G)) be any simple graph and ε ∈ E(G). Then

MO(ε) = ∩ε′∈A(ε)A(ε′).

Proof. It is clear from defifintion of AG, A(ε) is an open set in (E(G), TAG). So
by Theorem(3.7), ∩ε′∈A(ε)A(ε′) is open set. It is clear that if ε′ ∈ A(ε) then
ε ∈ A(ε′). Hence ∩ε′∈A(ε)A(ε′) is open set containing ε. By the definition of
MO(ε) as is the smallest open set containing ε then

MO(ε) ⊆ ∩ε′∈A(ε)A(ε′).

On the other hand, since MO(ε) is the intersection of all open sets containing
ε, then let

MO(ε) = ∩ε′∈BA(ε′)

for some subset B of E(G). Then ε ∈ A(ε′) for all ε′ ∈ B. This implies ε′ ∈ A(ε)
for all ε′ ∈ B. That is, B ⊆ A(ε). Hence

∩ε′∈A(ε)A(ε′) ⊆ ∩ε′∈BA(ε′) = MO(ε).

Therefore

MO(ε) = ∩ε′∈A(ε)A(ε′).

□

Remark 3.3. If the edge ε with ∂(ε) = 1 in a simple graph G = (V(G), E(G)),
then A(ε) = {ε, ε′} for some ε′ ∈ E(G). Then by Theorem(3.8),

MO(ε) = A(ε) ∩ A(ε′) = {ε, ε′} = A(ε).
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Theorem 3.9. Let G = (V(G), E(G)) be any simple graph and ε, ε′ ∈ E(G).
Then ε ∈ MO(ε′) if and only if A(ε′) ⊆ A(ε).

Proof. Let ε ∈ MO(ε′). By Theorem(3.8),

MO(ε′) = ∩ε′′∈A(ε′)A(ε′′).

Then ε ∈ ∩ε′′∈A(ε′)A(ε′′). That is,

ε ∈ A(ε′′) for all ε′′ ∈ A(ε′).

This implies

ε′′ ∈ A(ε) for all ε′′ ∈ A(ε′).

Hence A(ε′) ⊆ A(ε).
Conversely, let A(ε′) ⊆ A(ε). Hence

ε ∈ ∩ε′′∈A(ε)A(ε′′) ⊆ ∩ε′′∈A(ε′)A(ε′′) = MO(ε′).

That is, ε ∈ MO(ε′). □

Corollary 3.10. Let G = (V(G), E(G)) be any simple graph and ε, ε′ ∈ E(G).
Then MO(ε) = MO(ε′) if and only if A(ε′) = A(ε).

Proof. LetMO(ε) = MO(ε′). Then ε ∈ MO(ε′) and ε′ ∈ MO(ε). Then by
Theorem(3.9), A(ε′) ⊆ A(ε) and A(ε) ⊆ A(ε′). That is, A(ε′) = A(ε).
Conversely, let A(ε′) = A(ε). Then A(ε′) ⊆ A(ε) and A(ε) ⊆ A(ε′). Since
A(ε′) ⊆ A(ε) then by Theorem(3.9), ε ∈ MO(ε′). Since MO(ε) is the smallest
open set containing ε, then MO(ε) ⊆ MO(ε′). Similar, MO(ε′) ⊆ MO(ε). □

Theorem 3.11. Let G = (V(G), E(G)) be any simple graph. Then the adjacent
topological space (E(G), TAG) is discrete if and only if A(ε′) ⊈ A(ε) and A(ε) ⊈
A(ε′).

Proof. Let (E(G), TAG) be a discrete. Then MO(ε) = {ε} for all ε ∈ E(G).
Then for two different edges ε, ε′ ∈ E(G), ε′ ∈ MO(ε) and ε ∈ MO(ε′). By
Theorem(3.9), A(ε′) ⊈ A(ε) and A(ε) ⊈ A(ε′).
Conversely, let ε be any edge in E(G). It is clear that ε ∈ MO(ε). If ε′ ̸= ε ∈ E(G)
and ε′ ∈ MO(ε), then by Theorem(3.9), A(ε) ⊆ A(ε′) and this is contradiction
with the hypothesis. Hence MO(ε) = {ε} for all ε ∈ E(G). {ε} is open set for
all ε ∈ E(G). That is, (E(G), TAG) be a discrete. □

Let G = (V(G), E(G)) be any simple graph. For the adjacent topological space
(E(G), TAG) and F ⊆ E(G), by F we mean the closure set of F which is defined
as the intersection of all closed sets containing F , that is, F is the smallest
closed set containing F . Recall [8] that x ∈ F if and only if for every open set
G containing x, G ∩ F ̸= ∅.

Theorem 3.12. Let G = (V(G), E(G)) be any simple graph and ε ∈ E(G). Then
MO(ε) ⊆ A(ε′) for all ε′ ∈ (ε) and MO(ε) ⊆ A(ε′) for all ε′ ∈ (ε).
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Proof. For the first part, by Theorem(3.8),

MO(ε) = ∩ε′∈A(ε)A(ε′).

That is, MO(ε) ⊆ A(ε′) for all ε′ ∈ A(ε).

For the second part, let θ ∈ MO(ε). Then for every open set G containing θ,
G ∩ MO(ε) ̸= ∅. Since MO(ε) ⊆ A(ε′) for all ε′ ∈ (ε), then G ∩ A(ε′) ̸= ∅
for all ε′ ∈ (ε). Then θ ∈ A(ε′) for all ε′ ∈ (ε). Hence MO(ε) ⊆ A(ε′) for all
ε′ ∈ (ε). □

Corollary 3.13. Let G = (V(G), E(G)) be any simple graph and ε ∈ E(G). Then
{ε} ⊆ MO(ε) ⊆ A(ε′) for all ε′ ∈ (ε).

Proof. Let θ ∈ {ε}. Then for every open set G containing θ, G∩ {ε} ≠ ∅. Since
ε ∈ MO(ε), then G∩MO(ε) ̸= ∅. Then θ ∈ MO(ε). Hence {ε} ⊆ MO(ε)). For
the second part, it is clear from Theorem(3.12). □

Remark 3.4. Let G = (V(G), E(G)) be any simple graph and ε, ε′ ∈ E(G). Then

it is clear from Corollary(3.13) and Theorem(3.12), ε ∈ {ε′} if and only if
A(ε) ⊆ A(ε′).

Remark 3.5. Let G = (V(G), E(G)) be any 2-simple graph. It is clear from
Theorem(3.4) that the set of all edges ε with ∂(ε) = 2 in E(G) is an open set
in the adjacent topological space (E(G), TAG) where it will be the union of single
sets of its elements.

Theorem 3.14. Let G = (V(G), E(G)) be any simple graph. The set of all
edges ε with ∂(ε) = 1 in E(G) is a closed set in the adjacent topological space
(E(G), TAG).

Proof. Let F be set of all edges ε with ∂(ε) = 1 in E(G) and ε ∈ F . Recall [8]
that in the theory of topological spaces A ∪B = A ∪B. So

ε ∈ F = ∪ε′∈F {ε′} = ∪ε′∈F {ε′}.

This implies ε ∈ {ε′} for some ε′ ∈ F. Hence from Remark(3.5), A(ε) ⊆ A(ε′).
Since ∂(ε′) = 1 then ∂(ε) = 1, that is, ε ∈ F . Hence F is a closed set. □

4. Homeomorphically relation

Recall [8] that the map f : (X1, τ1) → (X2, τ2) of a topological space (X1, τ1)

into a topological space (X1, τ1) is continuous if and only if f(G) ⊆ f(G) for
all G ⊆ X1. A map f : (X1, τ1) → (X2, τ2) is called closed map if f(G) is
closed set in X2 for all closed set G ⊆ X1. A map f : (X1, τ1) → (X2, τ2) is
homoeomorphism if it is bijective, closed map and continuous map.

Theorem 4.1. Let G1 = (V(G1), E(G1)) and G2 = (V(G2), E(G2)) be two simple
graphs and Φ : E(G1) → E(G2) be any map. Then the following statements are
equivalent:
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(1) A map Φ is continuous as a map of adjacent topological spaces (E(G1), TAG1
)

into (E(G2), TAG2
).

(2) For all ε, ε′ ∈ E(G1),

A(ε) ⊆ A(ε′) implies A(Φ(ε)) ⊆ A(Φ(ε′)).

Proof. Suppose that a map Φ is conyinuous as a map of adjacent topological
spaces (E(G1), TAG1

) into (E(G2), TAG2
) and ε, ε′ ∈ E(G1) be arbitrary edges such

that A(ε) ⊆ A(ε′). Then by Remark(3.5) we get ε ∈ {ε′}. By the continuity of
Φ this implies

Φ(ε) ∈ Φ({ε′}) ⊆ {Φ(ε′)}.
Hence by Remark(3.5) we get A(Φ(ε)) ⊆ A(Φ(ε′)).
Conversely, suppose that for all ε, ε′ ∈ E(G1),

A(ε) ⊆ A(ε′) implies A(Φ(ε)) ⊆ A(Φ(ε′)).

Let G be any subset of E(G1) and ε ∈ G. If ε ∈ G then ε ∈ {ε′} for some
ε′ ∈ G. Hence A(ε) ⊆ A(ε′). By the hypothesis we get A(Φ(ε)) ⊆ A(Φ(ε′)).
This implies

Φ(ε) ∈ {Φ(ε′)} ⊆ Φ(G).

Hence Φ is continuous. □

Theorem 4.2. Let G1 = (V(G1), E(G1)) and G2 = (V(G2), E(G2)) be two simple
graphs and Φ : E(G1) → E(G2) be any map. Then Φ is a closed map if Φ is onto
and for all ε, ε′ ∈ E(G1),

A(Φ(ε)) ⊆ A(Φ(ε′)) implies A(ε) ⊆ A(ε′).

Proof. Let G be any closed set in E(G1). Since Φ is onto then there is a map
Θ : E(G2) → E(G1) such that Φ ◦ Θ = idE(G2). We will prove that Θ is a
continuous. Let ε, ε′ ∈ E(G2) be arbitrary edges such that A(ε) ⊆ A(ε′). Hence
A(Φ(Θ(ε)) ⊆ A(Φ(Θ(ε′)). By the hypothesis we get A(Θ(ε) ⊆ A(Θ(ε′). Then
by Theorem(4.1) Θ is a continuous. Hence Φ(G) = Θ−1(G) is closed set and so
Φ is a closed map. □

Theorem 4.3. Let G1 = (V(G1), E(G1)) and G2 = (V(G2), E(G2)) be two simple
graphs and Φ : E(G1) → E(G2) be any map. If Φ is a closed map and 1-1 then
for all ε, ε′ ∈ E(G1),

A(Φ(ε)) ⊆ A(Φ(ε′)) implies A(ε) ⊆ A(ε′).

Proof. Let ε, ε′ ∈ E(G2) be arbitrary edges such that A(Φ(ε)) ⊆ A(Φ(ε′)). Since
Φ is 1-1 then there is a map Θ : E(G2) → E(G1) such that Θ ◦Φ = idE(G1). Since
Φ is 1-1 and closed map then it is clear to see that Θ is continuous. This implies
that A(Θ(Φ(ε))) ⊆ A(Θ(Φ(ε′))). That is, A(ε) ⊆ A(ε′). □

Lemma 4.4. Let G1 = (V(G1), E(G1)) and G2 = (V(G2), E(G2)) be two simple
graphs. A bijective map Φ is homeomorphism if and only if for all ε, ε′ ∈ E(G1),

A(ε) ⊆ A(ε′) if and only if A(Φ(ε)) ⊆ A(Φ(ε′)).
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Proof. It is clear from Theorems(4.1), (4.2) and (4.3). □

Let G1 = (V(G1), E(G1)) and G2 = (V(G2), E(G2)) be two simple graphs with-
out isolated vertices. We say that two graphs G1 and G2 are isomorphic and
we write G1

∼= G2 if there is a bijective map ω : V(G1) → V(G2) such that if
ε1 ∈ E(G1) with Jε1 = {x, y} then there is ε2 ∈ E(G2) with Jε = {Ω(x),Ω(y)}.

Theorem 4.5. Let G1 = (V(G1), E(G1)) and G2 = (V(G2), E(G2)) be two simple
graphs without isolated vertices. If G1

∼= G2 then the two adjacent topological
spaces (E(G1), TAG1) and (E(G1), TAG1) are homeomorphic.

Proof. Let Ω : V(G1) → V(G2) be a bijective map such that if ε1 ∈ E(G1) with
Jε1 = {x, y} then there is ε2 ∈ E(G2) with Jε = {Ω(x),Ω(y)}. Define a map
ΩE : E(G1) → E(G2) by ΩE(ε) = ε′ where Jε = x, y and Jε′ = {Ω(x),Ω(y)}.
For any ε, ε ∈ E(G1) if ε = ε′ then Jε = Jε′ . Then Ω(Jε) = Ω(Jε′) and so
Ω(ε) = Ω(ε′). That is, ΩE is well define map. Let ε′ be any edge in E(G2)
and Jε′ = {x, y}. Since x, y ∈ V(G2) and Ω is onto then there are a, b ∈ V(G1)
such that Ω(a) = x and Ω(b) = y. By definition of Ω there is ε ∈ E(G1) with
JΩ = {a, b} such that ΩE(ε) = ε′. That is, ΩE is onto. Now we will prove that
ΩE is 1-1. Let ε, ε′ ∈ E(G1) such that ΩE(ε) = ΩE(ε

′). Then JΩE(ε) = JΩE(ε′)

and this implies Jε = Jε′ . Since G1 is simple then ε = ε′. Hence ΩE is objective
and by Lemma(4.4) the proof is complete. □

The converse of above Theorem no need to be true, for example, see in Fig-
ure(3), the graph G1 = (V(G1), E(G1)) is given by

V(G1) = {x1, x2, x3, x4}
and

E(G1) = {ε1, ε2, ε3, ε4}.
The subbasis AG1 is given by

AG1 = {A(ε1),A(ε2),A(ε3),A(ε4)}
where

A(ε1) = {ε1, ε2, ε3}, A(ε2) = {ε1, ε2, ε3}, A(ε3) = {ε1, ε3, ε4}
A(ε4) = {ε1, ε3, ε4}.

Then the adjacent topology space of a graph G1 is discrete. The graph G2 =
(V(G2), E(G2)) is given by

V(G2) = {y1, y2, y3, y4, y5, y6, y7, y8}
and

E(G2) = {ε′1, ε′2, ε′3, ε′4}.
The subbasis AG2 is given by

AG2 = {A(ε′1),A(ε′2),A(ε′3),A(ε′4)}
where A(ε′i) = {ε′i} (i = 1, 2, 3, 4). Then the adjacent topology space of a
graph G2 is discrete. Note that G1 and G2 are not isomorphic since |V(G1)| and
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Figure 3

Figure 4

|V(G1)| are finite and |V(G1)| ̸= |V(G1)| but the two adjacent topological spaces
(E(G1), TAG1) and (E(G1), TAG1) are homeomorphic.

Let (X, τ) be any topological space. If G is a simple graph with edge setX such
that τ = TAG then we say that (X, τ) is adjacent topological space induced by the
graph G. Note that if (X, τ) is an indiscrete then (X, τ) is adjacent topological
space induced by the complete graph and if (X, τ) is discrete then (X, τ) is
adjacent topological space induced by the cyclic graph. Let X = {ε1, ε2, ε3, ε4}
be any set and

τ = {∅, X, {ε2, ε4}, {ε1, ε2, ε4}, {ε2, ε3, ε4}}

ρ = {∅, X, {ε1}, {ε2}, {ε1, ε2}, {ε3, ε4}, {ε1, ε3, ε4}, {ε2, ε3, ε4}}.
Note that (X, ρ) is not adjacent topological space induced by any graph since
{ε1, ε2} and {ε3, ε4} don’t form subbasis for (X, ρ) while (X, τ) is adjacent topo-
logical space induced by the graph G in Figure(4).

Theorem 4.6. Let G = (V(G), E(G)) be simple graph without isolated edges
with adjacent topological space (E(G), TAG) and (X, τ) be any topological space.
If (E(G), TAG) and (X, τ) are homeomorphic then (X, τ) is adjacent topological
space.

Proof. Let H : E(G) → X be a homeomorphism. Since (E(G), TAG) is an
Alexandroff space then (X, τ) is an Alexandroff space. Construct graph G′ =
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(V(G′), E(G′)) by X = E(G′) and

V(G′) = ∪ε∈E(G)JH(ε)

and so τ = TAG′ . □

5. On some properties

Let G = (V(G), E(G)) be any simple graph. Recall [1] that the incidence
topological space (V(G), TIG) is a compact space if and only if V(G) is a finite.
For the adjacent topological space (E(G), TAG), it is a compact space if E(G) is
a finite. But if (E(G), TAG) is a compact space, then (E(G), TAG) no need to be
a finite. For example, take a simple graph G = (V(G), E(G)) in Figure(5), where

V(G) = N ∪ {0} = {0, 1, 2, 3, ....}
and

E(G) = {εn : n = 1, 2, 3, .... and Jεn = {0, n}}.
Note that

AG = {A(εn) : n = 1, 2, 3, ....}
where

A(εn) = E(G) for all n = 1, 2, 3, ....

Then the adjacent topological space (E(G), TAG) is an indiscrete, where

TAG = {∅, E(G)}.
In this case, (E(G), TAG) is a compact space but E(G) is infinite.

As we know that a graph G = (V(G), E(G)) is called connected graph if we can
travel a long the edges from any vertex into any other vertex. A topological
space (X, τ) is called disconnected space if there are two nonempty proper open
subsets G and G′ of X such that X = G ∪ G′ and G ∩ G′ = ∅. Otherwise it is
called connected space.
Let G = (V(G), E(G)) be any simple graph and ε ∈ E(G). If we remove ε from
the graph G and then we get the number of components (connected subgraphs)
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of G is increasing then we say that ε is a cutedge. If ε is a cutedge then ∂(ε) ≥ 2,
that is, {ε} is an open set in the adjacent topological space (E(G), TAG) by
Theorem(3.4). Let CE ⊆ E(G) be a component of a connected graph G. If
G − CE has more that one component then CE is called edeges-cut. If every
proper subset of CE is not edeges-cut then CE is called m-edegescut.

Theorem 5.1. Every m-edegescut in connected 2-simple graph G = (V(G), E(G))
is an open set in the adjacent topological space (E(G), TAG).

Proof. Let CE be m-edegescut in G. Then every ε ∈ CE must be adjacent with
at least two different components. Hence ∂(ε) = 2 for all ε ∈ CE . Hence by
Theorem(3.4), CE an open set in the adjacent topological space (E(G), TAG). □

Theorem 5.2. Let G = (V(G), E(G)) be simple graph without isolated vertix
with adjacent topological space (E(G), TAG). If G is disconnected graph then
(E(G), TAG) is disconnected space.

Proof. If G is disconnected graph then take C := {Gi : i ∈ I} is the family of
all components in G where Gi = (V(Gi), E(Gi)) for all i ∈ I. Now for all i ∈ I,
E(Gi) = ∪ε∈E(Gi)A(ε). Then G := E(Gk) is nonempty proper open subset of
E(G) where k ∈ I. Then

G′ := Gc = [E(Gi)]
c = ∪i∈I−kE(Gi)

is also nonempty proper open subset of E(G). That is, (E(G), TAG) is discon-
nected space. □

Let G = (V(G), E(G)) be two simple graphs. It is clear that if G is a connected
graph and |E(G)| ≤ 3 then (E(G), TAG) is connected space.

Example 5.3. A simple graph G = (V(G), E(G)) in Figure(6) is a connected
graph and |E(G)| > 3. The adjacent topological space (E(G), TAG) is given by

AG = {A(ε1),A(ε2),A(ε3),A(ε4),A(ε5),A(ε6)}

where

A(ε1) = {ε1, ε2, ε3}, A(ε2) = {ε1, ε2, ε3, ε4, ε5}, A(ε3) = {ε1, ε2, ε3, ε4, ε6}

A(ε4) = {ε2, ε3, ε4, ε5, ε6}, A(ε5) = {ε2, ε4, ε5, ε6}, A(ε6) = {ε3, ε4, ε5, ε6}.

Note that (E(G), TAG) is not discrete space and connected space.

Let (X, τ) be any topological space. A subset A of X is called dense in X if
A = X.

Theorem 5.4. Let G = (V(G), E(G)) be simple connected graph with ∂(ε) = 1
for some ε ∈ E(G) and |E(G)| > 2. Then the set A = {ε ∈ E(G) : ∂(ε) > 1} is a
dense in adjacent topological space (E(G), TAG).
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Proof. It is clear that A ⊆ E(G). Let ε ∈ E(G). Suppose that ε /∈ A. Then there
is open set G containing ε such that G ∩ A = ∅. Hence ε ∈ G ⊆ Ac. Then for
every ε ∈ G, ∂(ε) = 1. Then G doesn’t equal a union of finitely intersection
of elements of AG, that is, G is not open set and this is contradiction. Hence
ε ∈ A. □

Theorem 5.5. Let G = (V(G), E(G)) be simple connected graph with ∂(ε) = 1
for some ε ∈ E(G) and |E(G)| > 2. Then the set A = {ε ∈ E(G) : ∂(ε) > 1} is a
dense in adjacent topological space (E(G), TAG).

Proof. It is clear that A ⊆ E(G). Let ε ∈ E(G). Suppose that ε /∈ A. Then there
is open set G containing ε such that G ∩ A = ∅. Hence ε ∈ G ⊆ Ac. Then for
every ε ∈ G, ∂(ε) = 1. Then G doesn’t equal a union of finitely intersection
of elements of AG, that is, G is not open set and this is contradiction. Hence
ε ∈ A. □
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