DOI QR코드

DOI QR Code

Influence of cross-flaws on crack initiation and failure modes around a horseshoe-shaped cavity

  • Bo Zhang (School of Civil Engineering, Shandong University) ;
  • Jiancheng Zhang (School of Civil Engineering, Shandong University) ;
  • Piaoyang Zhu (Sinic Holdings (Group) - Shanghai and Jiangsu) ;
  • Jinglong Li (School of Civil Engineering, Shandong University) ;
  • Biao Li (School of Civil Engineering, Shandong University) ;
  • Haibo Li (The Fourth Prospecting of Shandong Coal Geology Bureau)
  • Received : 2023.12.12
  • Accepted : 2024.09.21
  • Published : 2024.10.10

Abstract

Cross-flaws are frequently encountered in practical rock engineering projects near horseshoe-shaped cavities, and their presence can significantly impact the failure mode of these cavities. This study utilizes a combination of laboratory experiments and numerical simulations to investigate the influence of cross-flaws on the failure mode of a horseshoe-shaped cavity. During the experimental tests, we varied the length of secondary flaw and the angle of the cross-flaws in the specimens, followed by subjecting them to biaxial compression. Our experimental results show that when the angle α between the primary and the secondary flaws is small (0° and 45°), only one crack is initiated at the vault of the cavity, resulting in a shear failure mode. Conversely, when the angle α is large (90° and 135°), two cracks are more likely to initiate at the vault of the cavity, leading to the failure mode of falling blocks in the surrounding rock. Furthermore, the circumferential stress at the cavity vault from numerical simulations results is consistent with this observed phenomenon. When the angle α is small, only one circumferential tensile stress concentration is observed at the cavity vault, resulting in the initiation of a single crack. In contrast, when the angle α is large, two stress concentrations appear at the vault of the cavity, leading to the initiation of two cracks from these locations.

Keywords

Acknowledgement

This paper is funded by the National Natural Science Foundation of China (NO. 42272311, 51909142), the Youth program of National Natural Science Foundation of China (No. 52309134), the Youth Foundation of Shandong Province (No. ZR2023QE266).

References

  1. Bieniawski, Z.T. (1967), "Mechanism of brittle fracture of rock, Parts I, II and III", Int. J. Rock Mech. Min.Sci., 4, 395-430. https://doi.org/10.1016/0148-9062(67)90032-0.
  2. Brady, B.H.G. and Brown, E.T. (2006), "Rock mechanics for underground mining", Springer, Dordrecht, https://doi.org/10.1007/978-1-4020-2116-9.
  3. Cao, R.H., Cao, P., Lin, H., Pu, C.Z. and Ou, K. (2016), "Mechanical behavior of brittle rock-like specimens with preexisting fissures under uniaxial loading: experimental studies and particle mechanics approach", Rock Mech. Rock Eng., 49(3), 763-783. https://doi.org/10.1007/s00603-015-0779-x.
  4. Cheng, H., Zhou, X., Zhu, J. and Qian, Q. (2016),. "The effects of crack openings on crack initiation, propagation and coalescence behavior in rock-like materials under uniaxial compression", Rock Mech. Rock Eng., 49(9), 3481-3494. https://doi.org/10.1007/s00603-016-0998-9.
  5. Cheng, X.Y. (2019), "Damage and failure characteristics of rock similar materials with pre-existing cracks", Int. J. Coal Sci. Technol., 6(4), 505-517. https://doi.org/10.1007/s40789-019-0263-4.
  6. Dutta, P., Bhattacharya, P. and Kumar, A. (2022), "Support pressure for undrained stability of horseshoe-shaped twin tunnels with semi-elliptical roof in clay", Iran. J. Sci. Technol.- Trans. Civ. Eng., 46(3), 2697-2711. https://doi.org/10.1007/s40996-021-00763-z.
  7. Deng, E., Yang, W.C., Lei, M.F., Yin, R.S. and Zhang, P.P. (2018), "Instability mode analysis of surrounding rocks in tunnel blasting construction with thin bedrock roofs", Geotech. Geol. Eng., 36(4), 2565-2576. https://doi.org/10.1007/s10706-018-0483-1.
  8. Ding, P., Tao, L., Yang, X., Zhao, J. and Shi, C. (2019), "Threedimensional dynamic response analysis of a single-ring structure in a prefabricated subway station", Sust. Cities Soc., 45, 271-286. https://doi.org/10.1016/j.scs.2018. 11.010.
  9. Ding, P., Shi, C., Tao, L., Liu, Z. and Zhang, T. (2023), "Research on seismic analysis methods of large and complex underground pipe structures in hard rock sites", Tunn. Undergr. Sp. Technol., 135, 105035. https://doi.org/10.1016/j.tust.2023.105035.
  10. Ding, S., Gao, Y., Jing, H., Shi, X., Qi, Y. and Guo, J. (2021), "Influence of weak interlayer on the mechanical performance of the bolted rock mass with a single free surface in deep mining", Minerals (Basel), 11(5), 496. https://doi.org/10.3390/min11050496.
  11. Feng, X.J., Wang, P., Liu, S.F., Wei, H., Miao, Y.L. and Bu, S.J. (2022), "Mechanism and law analysis on ground settlement caused by shield excavation of small-radius curved tunnel", Rock Mech. Rock Eng., 55(6), 3473-3488. https://doi.org/10.1007/s00603-022-02819-6.
  12. Grendas, N., Marinos, V., Papathanassiou, G., Ganas, A. and Valkaniotis, S. (2018), "Engineering geological mapping of earthquake-induced landslides in South Lefkada Island, Greece: evaluation of the type and characteristics of the slope failures", Environ. Earth Sci., 77(12), 1-19. https://doi.org/10.1007/s12665-018-7598-9.
  13. Haeri, H., Sarfarazi, V., Yazdani, M., Shemirani, A.B. and Hedayat, A. (2018), "Experimental and numerical investigation of the center-cracked horseshoe disk method for determining the mode I fracture toughness of rock-like material", Rock Mech. Rock Eng., 51(1), 173-185. https://doi.org/10.1007/s00603-017-1310-3.
  14. Hoek, E. and Brown, E.T. (1980), "Empirical strength criterion for rock masses", J. Geotech. Eng. Div. ASCE, 106(9), 1013-1035.
  15. Huang, Y.H., Yang, S.Q., Hall, M.R., Tian, W.L. and Yin, P.L. (2018), "Experimental study on uniaxial mechanical properties and crack propagation in sandstone containing a single oval cavity", Arch. Civ. Mech. Eng., 18(4), 1359-1373. https://doi.org/10.1016/j.acme.2018.04.005.
  16. Huang, Y.H., Yang, S.Q., Ranjith, P.G. and Zhao, J. (2017), "Strength failure behavior and crack evolution mechanism of granite containing pre-existing non-coplanar holes: experimental study and particle flow modeling", Comput. Geotech., 88, 182-198. https://doi.org/10.1016/j.compgeo.2017.03.015.
  17. Jiang, T., Pan, X., Lei, J., Zhang, J. and Wang, W. (2019), "Rupture and crack propagation in artificial soft rock with preexisting fractures under uniaxial compression", Geotech. Geol. Eng., 37(3), 1943-1956. https://doi.org/10.1007/s10706-018-0736-z.
  18. Jia, C., Li, Y., Lian, M.Y. and Zhou, X.Y. (2017), "Jointed surrounding rock mass stability analysis on an underground cavern in a hydropower station based on the extended key block theory", Energies (Basel), 10(4), 563. https://doi.org/10.3390/en10040563.
  19. Jia, P. and Tang, C.A. (2008), "Numerical study on failure mechanism of tunnel in jointed rock mass", Tunn. Undergr. Sp. Technol., 23(5), 500-507. https://doi.org/10.1016/j.tust.2007.09.001.
  20. Karimi, J., Asadizadeh, M., Hossaini, M.F., Nowak, S. and Sherizadeh, T. (2021), "Compressive strength of flawed cylindrical specimens subjected to axial loading", Geomech. Eng., 27(1), 87-99. https://doi.org/10.12989/gae.2021.27.1.087.
  21. Komurlu, E., Kesimal, A. and Demir, A.D. (2017), "Dog bone shaped specimen testing method to evaluate tensile strength of rock materials", Geomech. Eng., 12(6), 883-898. https://doi.org/10.12989/gae.2017.12.6.883.
  22. Kumar, A. and Tiwari, G. (2022), "Jackknife based generalized resampling reliability approach for rock slopes and tunnels stability analyses with limited data: Theory and applications", J. Rock Mech. Geotech. Eng., 14(3), 714-730. https://doi.org/10.1016/j.jrmge.2021.11.003.
  23. Kun, M. and Onargan, T. (2013), "Influence of the fault zone in shallow tunneling: A case study of izmir metro tunnel", Tunn. Undergr. Sp. Technol., 33, 34-45. https://doi.org/10.1016/j.tust.2012.06.016.
  24. Lee, J. and Hong, J. (2018), "Crack initiation and fragmentation processes in pre-cracked rock-like materials", Geomech. Eng., 15(5), 1047-1059. https://doi.org/10.12989/gae.2018.15.5.1047.
  25. Lin, Q.B., Cao, P., Cao, R.H., Lin, H. and Meng, J.J. (2020), "Mechanical behavior around double circular openings in a jointed rock mass under uniaxial compression", Arch. Civ. Mech. Eng., 20(1), 1-18. https://doi.org/10.1007/ s43452-020-00027-z.
  26. Li, H.Q. and Wong, L.N.Y. (2014), Numerical study on coalescence of pre-existing flaw pairs in rock-like material", Rock Mech. Rock Eng., 47(6), 2087-2105. https://doi.org/10.1007/s00603-013-0504-6.
  27. Li, X.H., Zhu, Z.M., Wang, M., Shu, Y., Deng, S., Xiao, D.J., 2022. "Influence of blasting load directions on tunnel stability in fractured rock mass", J. Rock Mech. Geotech. Eng., 14(2), 346-365. https://doi.org/10.1016/ j.jrmge.2021.06.010.
  28. Li, X. and Konietzky, H. (2015), "Numerical simulation schemes for time-dependent crack growth in hard brittle rock", Acta Geotech., 10(4), 513-531. https://doi.org/10.1007/s11440-014-0337-9.
  29. Li, Y.Y., Jin, X. G., Lv, Z.T., Dong, J.H. and Guo, J.C. (2016), "Deformation and mechanical characteristics of tunnel lining in tunnel intersection between subway station tunnel and construction tunnel", Tunn. Undergr. Sp. Technol., 56, 22-33. https://doi.org/10.1016/j.tust.2016.02.016.
  30. Lu, A., Zhang, N., Zhang, X., Lu, D. and Li, W. (2015), "Analytic method of stress analysis for an orthotropic rock mass with an arbitrary-shaped tunnel", Int. J. Geomech., 15(4), 04014068. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000408.
  31. Ng, C. W.W., Fong, K.Y. and Liu, H.L. (2018), "The effects of existing horseshoe-shaped tunnel sizes on circular crossing tunnel interactions: Three-dimensional numerical analyses", Tunn. Undergr. Sp. Technol., 77, 68-79. https://doi.org/10.1016/j.tust.2018.03.025.
  32. Paraskevopoulou, C., Perras, M., Diederichs, M., Amann, M., Low, S., Lam, T. and Jensen, M. (2017), "The three stages of stress relaxation - Observations for the time-dependent behaviour of brittle rocks based on laboratory testing", Eng. Geol., 216, 56-75. https://doi.org/10.1016/j.enggeo.2016.11.010.
  33. Pan P.Z., Miao S.T., Jiang Q., Wu Z.H. and Shao C.Y. (2019), "The influence of infilling conditions on flaw surface relative displacement induced cracking behavior in hard rock", Rock Mech. Rock Eng., 53(10), 4449-4470. https://doi.org/10.1007/s00603-019-02033-x.
  34. Pan, W., Wang, X., Liu, Q., Yuan, Y. and Zuo, B. (2019), "Nonparallel double-crack propagation in rock-like materials under uniaxial compression", Int. J. Coal Sci. Technol., 6(3), 372-387. https://doi.org/10.1007/s40789-019-0255-4.
  35. Panji, M., Mojtabazadeh-Hasanlouei, S. and Fakhravar, A. (2022), "Seismic response of the ground surface including underground horseshoe-shaped cavity", Transp. Infrastruct. Geotechnol., 9(3), 338-355. https://doi.org/ 10.1007/ s40515-021-00178-3.
  36. Rahaman, O. and Kumar, J. (2020), "Stability analysis of twin horse-shoe shaped tunnels in rock mass", Tunn. Undergr. Sp. Technol., 98, 103354. https://doi.org/10.1016/j.tust.2020.103354.
  37. Sagong, M., Park, D., Yoo, J. and Lee, J.S. (2011), "Experimental and numerical analyses of an opening in a jointed rock mass under biaxial compression", Int. J. Rock Mech. Min. Sci., 48(7), 1055-1067. https://doi.org/10.1016/j. ijrmms.2011.09.001.
  38. Shi, C., Tao, L., Ding, P., Wang, Z. and Jia, Z. (2023), "Study on seismic response characteristics and failure mechanism of giantspan flat cavern", Tunn. Undergr. Sp. Technol., 140, 105328. https://doi.org/10.1016/j.tust.2023. 105328.
  39. Shi, C., Tao, L., Ding, P., Wang, Z., Jia, Z. and Shi, M. (2024), "Analytical solution for deep non-circular tunnels considering slippage effects under far-field seismic SV waves", Tunn. Undergr. Sp. Technol., 144, 105552. https://doi.org/10.1016/j.tust.2023.105552.
  40. Soomro, M.A., Mangnejo, D.A. and Mangi, N. (2023), "Investigation of crack growth in a brick masonry wall due to twin perpendicular excavations", Geomech. Eng., 34(3), 251-265. https://doi.org/10.12989/gae.2023.34.3.251.
  41. Tao, L., Ding, P., Shi, C., Wu, X., Wu, S. and Li, S. (2019), "Shaking table test on seismic response characteristics of prefabricated subway station structure", Tunn. Undergr. Sp. Technol., 91, 102994. https://doi.org/10.1016/j.tust.2019.102994.
  42. Tao, L., Ding, P., Yang, X., Lin, P., Shi, C., Bao, Y., Wei, P. and Zhao, J. (2020), "Comparative study of the seismic performance of prefabricated and cast-in-place subway station structures by shaking table test", Tunn. Undergr. Space Technol., 105, 103583. https://doi.org/10.1016/j.tust.2020.103583.
  43. Tao, L., Ding, P., Lin, H., Wang, H., Kou, W., Shi, C., Li, S. and Wu, S. (2021), "Three-dimensional seismic performance analysis of large and complex underground pipe trench structure", Soil Dyn. Earthq. Eng., 150, 106904. https://doi.org/10.1016/j.soildyn.2021.106904.
  44. Tao, L., Shi, C., Ding, P., Li, S., Wu, S. and Bao, Y. (2022a), "A study on bearing characteristic and failure mechanism of thinwalled structure of a prefabricated subway station", Front. Struct. Civ. Eng., 16(3), 359-377. https://doi.org/10.1007/s11709-022-0816-2.
  45. Tao, L., Shi, C., Ding, P., Yang, X., Bao, Y. and Wang, Z. (2022b), "Shaking table test of the effect of an enclosure structure on the seismic performance of a prefabricated subway station", Tunn. Undergr. Sp. Technol., 125, 104533. https://doi.org/10.1016/j.tust.2022.104533.
  46. Vasarhelyi, B. and Bobet, A. (2000), "Modeling of crack initiation, propagation and coalescence in uniaxial compression", Rock Mech. Rock Eng., 33(2), 119-139. https://doi.org/10.1007/s006030050038.
  47. Wang, M., Wan, W. and Zhao, Y.L. (2020), "Experimental study on crack propagation and the coalescence of rock-like materials with two preexisting fissures under biaxial compression", Bull. Eng. Geol. Environ., 79(6), 3121-3144. https://doi.org/10.1007/s10064-020-01759-1.
  48. Wang, M., Cao, P., Wan, W., Zhao, Y.L., Liu, J. and Liu, J.S. (2017), "Crack growth analysis for rock-like materials with ordered multiple pre-cracks under biaxial compression", J. Cent. South Univ., 24(4), 866-874. https://doi.org/10.1007/s11771-017-3489-6.
  49. Walton, G., Alejano, L.R., Arzua, J. and Markley, T. (2018), "Crack damage parameters and dilatancy of artificially jointed granite samples under triaxial compression", Rock Mech. Rock Eng., 51(6), 1637-1656. https://doi.org/10.1007/s00603-018-1433-1.
  50. Xu, Q., Chen, J.T. and Xiao, M. (2020), "Analysis of unsteady seepage field and surrounding rock stability of underground cavern excavation", Tunn. Undergr. Sp. Technol., 97, 103239. https://doi.org/10.1016/j. tust.2019.103239.
  51. Xu, J. and Li, Z.X. (2019),." Crack propagation and coalescence of step-path failure in rocks", Rock Mech. Rock Eng., 52(4), 965-979. https://doi.org/10.1007/s00603-018-1661-4.
  52. Ying, P., Li, W.J., Zhu, Z.M., Li, X.H., Gao, W.T. and Shu, Y. (2022), "Influence of impact loading orientations on the mechanical behaviour of rocks around a tunnel", Int. J. Rock Mech. Min. Sci., 152, 105071. https://doi.org/10.1016/j.ijrmms.2022.105071.
  53. Zhao, C., Niu, J., Zhang, Q., Zhao, C. and Zhou, Y. (2019), "Failure characteristics of rock-like materials with single flaws under uniaxial compression", Bull. Eng. Geol. Environ., 78(1), 593-603. https://doi.org/10.1007/s10064-018-1379-2.
  54. Zhang, B., Li, Y., Yang, X.Y., Li, S.C., Wei, C. and Songa, J. (2023a), "Influence of size and location of a pre-existing fracture on hydraulic fracture propagation path", Geomech. Eng., 32(3), 321-333. https://doi.org/10.12989/gae.2023.32.3.321.
  55. Zhang, B., Zhu, P., Zhang, J., Li, S., Qiu, D. and Li, J. (2023b), "Effect of an adjacent flaw on the crack propagation of a horseshoe-shaped cavity", Rock Mech. Rock Eng, 56(3), 1807-1821. https://doi.org/10.1007/s00603-022-03132-y.
  56. Zhang, B., Li, S.C., Yang, X.Y., Zhang, D.F., Wang Q., CAI W., Yang C.X. and Deng Z.Q. (2015), "Mechanical property of rock-like material with intersecting multi-flaws under uniaxial compression", J. Rock Mech. Eng., 34(9): 55-63. https://doi.org/10.13722/j.cnki.jrme.2014.0876.
  57. Zhang, B., Li, Y., Yang, X.Y., Li, S.C., Liu, B., Xu, Z.H. and Pei, Y. (2020), "Influence of two cross-flaws geometry on the strength and crack coalescence of rock-like material specimens under uniaxial compression", Int J Geomech., 20(8). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001757.
  58. Zhang, X. and Wong, L.N.Y. (2012), "Cracking processes in rocklike material containing a single flaw under uniaxial compression: A numerical study based on parallel bondedparticle model approach", Rock Mech. Rock Eng., 45(5), 711-737. https://doi.org/10.1007/s00603-011-0176-z.
  59. Zhou, X.P., Wang, Y.T., Zhang, J.Z. and Liu, F.N. (2019), "Fracturing behavior study of three-flawed specimens by uniaxial compression and 3D digital image correlation: sensitivity to brittleness", Rock Mech. Rock Eng., 52(3), 691-718. https://doi.org/10.1007/s00603-018-1600-4.
  60. Zhou, X.P., Bi, J. and Qian, Q.H. (2015), "Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws", Rock Mech. Rock Eng., 48(3), 1097-1114. https://doi.org/10.1007/ s00603-014-0627-4.
  61. Zhu, Z., Li, Y., Xie, J. and Liu, B. (2015), "The effect of principal stress orientation on tunnel stability", Tunn. Undergr. Sp. Technol., 49, 279-286. https://doi.org/10.1016/j.tust.2015.05.009.