References
- Ajith T, N., & P, S. (2023). Play, pause or praise?-a dual factor theory exploration of continuance, discontinuance and recommendation intentions in OTT platforms. World Leisure Journal, 1-25.
- Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.
- Al-Hattami, H. M. (2023). Understanding perceptions of academics toward technology acceptance in accounting education. Heliyon, 9(1).
- Al Amin, M. (2022). The influence of psychological, situational and the interactive technological feedback-related variables on customers' technology adoption to use online shopping applications. Journal of Global Marketing, 35(5), 384-407.
- An, S., Eck, T., & Yim, H. (2023). Understanding consumers' acceptance intention to use mobile food delivery applications through an extended technology acceptance model. Sustainability, 15(1), 832.
- Arfi, W. B., Nasr, I. B., Kondrateva, G., & Hikkerova, L. (2021). The role of trust in intention to use the IoT in eHealth: Application of the modified UTAUT in a consumer context. Technological Forecasting and Social Change, 167, 120688.
- Atlas, S. (2023). ChatGPT for higher education and professional development: A guide to conversational AI.
- Aydin, O., & Karaarslan, E. (2023). Is ChatGPT leading generative AI? What is beyond expectations?. Academic Platform Journal of Engineering and Smart Systems, 11(3), 118-134.
- Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1).
- Baidoo-Anu, D., & Ansah, L. O. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of AI, 7(1), 52-62.
- Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS quarterly, 351-370.
- Bhattarai, A. (2023). Exploring Customer Engagement through Generative AI Innovative Strategies in Digital Marketing Campaigns. Quarterly Journal of Emerging Technologies and Innovations, 8(12), 1-9.
- Blumel, J. H., Zaki, M., & Bohne, T. (2023). Personal touch in digital customer service: a conceptual framework of relational personalization for conversational AI. Journal of Service Theory and Practice, 34(1), 33-65.
- Bokhari, S. A. A., & Myeong, S. (2023). An Analysis of Artificial Intelligence Adoption Behavior Applying Extended UTAUT Framework in Urban Cities: The Context of Collectivistic Culture. Engineering Proceedings, 56(1), 289.
- Camilleri, M. A. (2024). Factors affecting performance expectancy and intentions to use ChatGPT: Using SmartPLS to advance an information technology acceptance framework. Technological Forecasting and Social Change, 201, 123247.
- Chakraborty, D., Siddiqui, M., Siddiqui, A., Paul, J., Dash, G., & Dal Mas, F. (2023). Watching is valuable: Consumer views-Content consumption on OTT platforms. Journal of Retailing and Consumer Services, 70, 103148.
- Charm, T., Dhar, R., Haas, S., Liu, J., Novemsky, N., & Teichner, W. (2020). Understanding and shaping consumer behavior in the next normal. McKinsey & Company, 24.
- Charm, T., Dhar, R., Haas, S., Liu, J., Novemsky, N., & Teichner, W. (2020). Understanding and shaping consumer behavior in the next normal. McKinsey & Company, 24.
- Chatterjee, J., & Dethlefs, N. (2023). This new conversational AI model can be your friend, philosopher, and guide... and even your worst enemy. Patterns, 4(1).
- Cheng, L. K., Huang, H. L., & Lai, C. C. (2022). Continuance intention in running apps: the moderating effect of relationship norms. International Journal of Sports Marketing and Sponsorship, 23(1), 132-154.
- Chitturi, R., Raghunathan, R., & Mahajan, V. (2008). Delight by design: The role of hedonic versus utilitarian benefits. Journal of marketing, 72(3), 48-63.
- Cho, H. Y., Yang H. C., & Hwang, B. J. (2023). The Effect of ChatGPT Factors & Innovativeness on Switching Intention: Using Theory of Reasoned Action (TRA). Journal of Distribution Science, 21(8), 83-96.
- Cobos, L. (2017). Determinants of continuance intention and word of mouth for hotel branded mobile app users.
- Cui, Y. G., van Esch, P., & Phelan, S. (2024). How to build a competitive advantage for your brand using generative AI. Business Horizons.
- Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
- Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data-evolution, challenges and research agenda. International journal of information management, 48, 63-71.
- Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., ... & Wright, R. (2023). "So what if ChatGPT wrote it?" Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71, 102642.
- Farzin, M., Sadeghi, M., Yahyayi Kharkeshi, F., Ruholahpur, H., & Fattahi, M. (2021). Extending UTAUT2 in M-banking adoption and actual use behavior: does WOM communication matter?. Asian Journal of Economics and Banking, 5(2), 136-157.
- Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research.
- Flavian, C., & Casalo, L. V. (2021). Artificial intelligence in services: current trends, benefits and challenges. The Service Industries Journal, 41(13-14), 853-859.
- Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
- Goyette, I., Ricard, L., Bergeron, J., & Marticotte, F. (2010). e-WOM Scale: word-of-mouth measurement scale for e-services context. Canadian Journal of Administrative Sciences/Revue Canadienne des Sciences de l'Administration, 27(1), 5-23.
- Gu, D., Yang, X., Li, X., Jain, H. K., & Liang, C. (2018). Understanding the role of mobile internet-based health services on patient satisfaction and word-of-mouth. International journal of environmental research and public health, 15(9), 1972.
- Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., and Tatham, R. L. (2010). Multivariate Data Analysis. Prentice Hall Upper Saddle River.
- Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., Black, W. C., & Anderson, R. E. (2019). Multivariate data analysis (Eighth Edi). Hampshire, United Kingdom: Cengage Learning EMEA. https://doi.org/10.1002/9781119409137.ch4.
- Hameed, I., Akram, U., Khan, Y., Khan, N. R., & Hameed, I. (2024). Exploring consumer mobile payment innovations: An investigation into the relationship between coping theory factors, individual motivations, social influence and word of mouth. Journal of Retailing and Consumer Services, 77, 103687.
- Hermann, E. (2023). Artificial intelligence in marketing: friend or foe of sustainable consumption?. AI & SOCIETY, 38(5), 1975-1976.
- Hill-Yardin, E. L., Hutchinson, M. R., Laycock, R., & Spencer, S. J. (2023). A Chat (GPT) about the future of scientific publishing. Brain, behavior, and immunity, 110, 152-154.
- Hu, K. (2023). ChatGPT sets record for fastest-growing user base-analyst note. reuters, 12, 2023.
- Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55.
- Huang, M. H., Rust, R., & Maksimovic, V. (2019). The feeling economy: Managing in the next generation of artificial intelligence (AI). California Management Review, 61 (4), 43-65.
- Huete-Alcocer, N. (2017). A literature review of word of mouth and electronic word of mouth: Implications for consumer behavior. Frontiers in psychology, 8, 1256.
- Hwang, B. J., & Cho, H. Y. (2023). Effect of Perceived Value of OTT Platform on Consumer's Technology Acceptance, Continuous Use Intention, and WOM. The Journal of Economics, Marketing and Management, 11(5), 29-44.
- Hwang, J. S., & Lee, H. J. (2017). A Study on Unified Theory of Acceptance and Use of Technology (UTAUT) Improvement using Meta-Analysis: Focused on Analysis of Korea Citation Index (KCI)-Listed Researches. The Journal of Bigdata, 2(2), 47-56.
- Iranmanesh, M., Senali, M. G., Ghobakhloo, M., Foroughi, B., Yadegaridehkordi, E., & Annamalai, N. (2024). Determinants of intention to use ChatGPT for obtaining shopping information. Journal of Marketing Theory and Practice, 1-18.
- Islam, T., Miron, A., Nandy, M., Choudrie, J., Liu, X., & Li, Y. (2024). Transforming Digital Marketing with Generative AI. Computers, 13(7), 168.
- Ismagilova, E., Slade, E., Rana, N. P., & Dwivedi, Y. K. (2020). The effect of characteristics of source credibility on consumer behaviour: A meta-analysis. Journal of Retailing and Consumer Services, 53, 101736.
- Jan, A., Khan, M., Ajmal, M. M., & Patwary, A. K. (2023). From traditional advertising to digital marketing: Exploring electronic word of mouth through a theoretical lens in the hospitality and tourism industry. Global Knowledge, Memory and Communication.
- Jeong, E., & Jo, H. (2024). Omnichannel word-of-mouth genesis: the confluence of online-offline experiences, social influence and skepticism. Asia Pacific Journal of Marketing and Logistics.
- Jeyaraj, A., Dwivedi, Y. K., & Venkatesh, V. (2023). Intention in information systems adoption and use: Current state and research directions. International Journal of Information Management, 73, 102680.
- Jo, H. (2023). Understanding AI tool engagement: A study of ChatGPT usage and word-of-mouth among university students and office workers. Telematics and Informatics, 85, 102067.
- Jo, H., & Park, D. H. (2024). Effects of ChatGPT's AI capabilities and human-like traits on spreading information in work environments. Scientific Reports, 14(1), 7806.
- Khan, M., Ajmal, M. M., Jan, A., Rahman, H. U., & Zahid, M. (2024). Identification of novel antecedents towards generating positive electronic word of mouth: evidence from the hospitality and tourism industry. Global Knowledge, Memory and Communication.
- Kietzmann, J., Paschen, J., & Treen, E. (2018). Artificial intelligence in advertising: How marketers can leverage artificial intelligence along the consumer journey. Journal of Advertising Research, 58(3), 263-267.
- Kim, J. H., & Kang, E. (2023). An empirical research: Incorporation of user innovativeness into TAM and UTAUT in adopting a golf app. Sustainability, 15(10), 8309.
- Kim, J. W., Jo, H. I., & Lee, B. G. (2019). The study on the factors influencing on the behavioral intention of chatbot service for the financial sector: Focusing on the UTAUT model. Journal of Digital Contents Society, 20(1), 41-50.
- Kim, J., Kim, J. H., Kim, C., & Park, J. (2023). Decisions with ChatGPT: Reexamining choice overload in ChatGPT recommendations. Journal of Retailing and Consumer Services, 75, 103494.
- Konya-Baumbach, E., Biller, M., & von Janda, S. (2023). Someone out there? A study on the social presence of anthropomorphized chatbots. Computers in Human Behavior, 139, 107513.
- Larsen, T. J., Sorebo, A. M., & Sorebo, O. (2009). The role of task-technology fit as users' motivation to continue information system use. Computers in Human behavior, 25(3), 778-784.
- Lee, H., & Kim, J. H. (2023). Effects of UTAUT on the Digital Literacy and Acceptance Intention of ChatGPT Users. The Society of Convergence Knowledge Transactions, 11(2), 33-43.
- Lee, Y., & Shin, D. (2020). A study on the online assessment using artificial intelligence for distance education. Journal of Learner-Centered Curriculum and Instruction, 20(14), 389-407.
- Li, H., & Liu, Y. (2014). Understanding post-adoption behaviors of e-service users in the context of online travel services. Information & Management, 51(8), 1043-1052.
- Li, H., Chen, Q., Zhong, Z., Gong, R., & Han, G. (2022). E-word of mouth sentiment analysis for user behavior studies. Information Processing & Management, 59(1), 102784.
- Li, H., Chen, Q., Zhong, Z., Gong, R., & Han, G. (2022). E-word of mouth sentiment analysis for user behavior studies. Information Processing & Management, 59(1), 102784.
- Lim, W. M., Gunasekara, A., Pallant, J. L., Pallant, J. I., & Pechenkina, E. (2023). Generative AI and the future of education: Ragnarok or reformation? A paradoxical perspective from management educators. The International Journal of Management Education, 21(2), 100790.
- Lim, W. M., Gunasekara, A., Pallant, J. L., Pallant, J. I., & Pechenkina, E. (2023). Generative AI and the future of education: Ragnarok or reformation? A paradoxical perspective from management educators. The International Journal of Management Education, 21(2), 100790.
- Loureiro, S. M., Cavallero, L., & Miranda, F. J. (2018). Fashion brands on retail websites: Customer performance expectancy and e-word-of-mouth. Journal of Retailing and Consumer Services, 41, 131-141.
- Ma, L., & Sun, B. (2020). Machine learning and AI in marketing-Connecting computing power to human insights. International Journal of Research in Marketing, 37(3), 481-504.
- Mattas, P. S. (2023). ChatGPT: A study of AI language processing and its implications. Journal homepage: www. ijrpr. com ISSN, 2582(7421), 7-8.
- Mishra, A., Shukla, A., Rana, N. P., Currie, W. L., & Dwivedi, Y. K. (2023). Re-examining post-acceptance model of information systems continuance: A revised theoretical model using MASEM approach. International Journal of Information Management, 68, 102571.
- Mithas, S., Murugesan, S., & Seetharaman, P. (2020). What is your artificial intelligence strategy?. IT Professional, 22(2), 4-9.
- Morgan, P. J., Cleave-Hogg, D., DeSousa, S., & Tarshis, J. (2004). High-fidelity patient simulation: validation of performance checklists. British Journal of Anaesthesia, 92(3), 388-392.
- Ooi, K. B., Tan, G. W. H., Al-Emran, M., Al-Sharafi, M. A., Capatina, A., Chakraborty, A., ... & Wong, L. W. (2023). The potential of generative artificial intelligence across disciplines: Perspectives and future directions. Journal of Computer Information Systems, 1-32.
- Paul, J., Ueno, A., & Dennis, C. (2023). ChatGPT and consumers: Benefits, pitfalls and future research agenda. International Journal of Consumer Studies, 47(4), 1213-1225.
- Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior research methods, instruments, & computers, 36, 717-731.
- Quinones, M., Romero, J., Schmitz, A., & Diaz-Martin, A. M. (2024). What factors determine the intention to use and recommend public autonomous shuttles in a real-life setting?. European Journal of Management and Business Economics.
- Ramadhan, A., Hidayanto, A. N., Evik, C. S., Rizkiandini, N., Rahimullah, N. A., Muthiah, R. H., ... & Phusavat, K. (2022). Factors affecting the continuation to use and e-WOM intention of online library resources by university students: A study in Indonesia. The Journal of Academic Librarianship, 48(6), 102592.
- Shi, D., & Maydeu-Olivares, A. (2020). The effect of estimation methods on SEM fit indices. Educational and psychological measurement, 80(3), 421-445.
- Shi, J. (2023). Digital Technology and Value Chain Agglomeration: Evidence from East Asia. Emerging Markets Finance and Trade, 1-16.
- Siagian, H., Tarigan, Z. J. H., Basana, S. R., & Basuki, R. (2022). The effect of perceived security, perceived ease of use, and perceived usefulness on consumer behavioral intention through trust in digital payment platform (Doctoral dissertation, Petra Christian University).
- Slade, E. L., Dwivedi, Y. K., Piercy, N. C., & Williams, M. D. (2015). Modeling consumers' adoption intentions of remote mobile payments in the United Kingdom: extending UTAUT with innovativeness, risk, and trust. Psychology & marketing, 32(8), 860-873.
- Stahl, B. C. (2021). Artificial intelligence for a better future: an ecosystem perspective on the ethics of AI and emerging digital technologies (p. 124). Springer Nature.
- Strzelecki, A. (2023). To use or not to use ChatGPT in higher education? A study of students' acceptance and use of technology. Interactive learning environments, 1-14.
- Tassiello, V., Amatulli, C., Tillotson, J. S., & Laker, B. (2024). aiWOM: Artificial Intelligence Word-of-Mouth. Conceptualizing Consumer-to-AI Communication. International Journal of Human-Computer Interaction, 1-13.
- Terwiesch, C. (2023). Would Chat GPT3 get a Wharton MBA? A prediction based on its performance in the operations management course. Mack Institute for Innovation Management at the Wharton School, University of Pennsylvania, 45.
- Tu, W., & He, J. (2023). Can digital transformation facilitate firms' M&A: Empirical discovery based on machine learning. Emerging Markets Finance and Trade, 59(1), 113-128.
- Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information systems research, 11(4), 342-365.
- Venkatesh, V. (2022). Adoption and use of AI tools: a research agenda grounded in UTAUT. Annals of Operations Research, 308(1), 641-652.
- Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2), 186-204.
- Venkatesh, V., Maruping, L. M., & Brown, S. A. (2006). Role of time in self-prediction of behavior. Organizational Behavior and Human Decision Processes, 100(2), 160-176.
- Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
- Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS quarterly, 157-178.
- Venkatesh, V., Thong, J. Y., & Xu, X. (2016). Unified theory of acceptance and use of technology: A synthesis and the road ahead. Journal of the association for Information Systems, 17(5), 328-376.
- Wolf, V., & Maier, C. (2024). ChatGPT usage in everyday life: A motivation-theoretic mixed-methods study. International Journal of Information Management, 79, 102821.
- Xia, Y., & Yang, Y. (2019). RMSEA, CFI, and TLI in structural equation modeling with ordered categorical data: The story they tell depends on the estimation methods. Behavior research methods, 51, 409-428.
- Xu, D., Guo, Y., & Huang, M. (2021). Can artificial intelligence improve firms' competitiveness during the COVID-19 pandemic: international evidence. Emerging Markets Finance and Trade, 57(10), 2812-2825.
- Xu, M., Li, B., Scott, O. K., & Wang, J. J. (2023). New platform and new excitement? Exploring young educated sport customers' perceptions of watching live sports on OTT services. International Journal of Sports Marketing and Sponsorship, 24(4), 682-699.