과제정보
We would like to express our sincerest gratitude to the Al-Farabi Kazakh National University for supporting this work by providing computing resources (Department of Physics and Technology). This research was funded by the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan, grant AP14872061. This work has made use of data, software and/or web tools obtained from the Gravitational Wave Open Science Center (https://www.gw-openscience.org), a service of LIGO Laboratory, the LIGO Scientific Collaboration and the Virgo Collaboration. LIGO is funded by the U.S. National Science Foundation. Virgo is funded by the French Centre National de Recherche Scientifique (CNRS), the Italian Istituto Nazionale della Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by Polish and Hungarian institutes.
참고문헌
- Aasi J, Abbott BP, Abbott R, Abbott T, Abernathy MR, et al., Advanced LIGO, Class. Quantum Grav. 32, 074001 (2015). https://doi.org/10.1088/0264-9381/32/7/074001
- Abbott BP, Abbott R, Abbott TD, Abernathy M, Acernese F, et al., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116, 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102
- Abbott BP, Abbott R, Abbott TD, Abernathy MR, Ackley K, et al., Exploring the sensitivity of next generation gravitational wave detectors, Class. Quantum Grav. 34, 044001 (2017a). https://doi.org/10.1088/1361-6382/aa51f4
- Abbott BP, Abbott R, Abbott TD, Abraham S, Acernese F, et al., GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs, Phys. Rev. X. 9, 031040 (2019a). https://doi.org/10.1103/PhysRevX.9.031040
- Abbott BP, Abbott R, Abbott TD, Abraham S, Acernese F, et al., GW190425: observation of a compact binary coalescence with total mass ~3.4M⊙, Astrophys. J. Lett. 892, L3 (2020). https://doi.org/10.3847/2041-8213/ab75f5
- Abbott BP, Abbott R, Abbott TD, Abraham S, Acernese F, et al., Prospects for observing and localizing gravitationalwave transients with advanced LIGO, advanced Virgo and KAGRA, Living Rev. Relativ. 21, 3 (2018). https://doi.org/10.1007/s41114-020-00026-9
- Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, et al., GW170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119, 161101 (2017b). https://doi.org/10.1103/PhysRevLett.119.161101
- Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, et al., Multi-messenger observations of a binary neutron star merger, Astrophys. J. Lett. 848, L12 (2017c). https://doi.org/10.3847/2041-8213/aa91c9
- Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, et al., Properties of the binary neutron star merger GW170817. Phys. Rev. X. 9, 011001 (2019b). https://doi.org/10.1103/PhysRevX.9.011001
- Abbott BP, Abbott R, Adhikari R, Ajith P, Allen B, et al., LIGO: the laser interferometer gravitational-wave observatory, Rep. Prog. Phys. 72, 076901 (2009). https://doi.org/10.1088/0034-4885/72/7/076901
- Abbott R, Abbott TD, Abraham S, Acernese F, Ackley K, et al., Observation of gravitational waves from two neutron starblack hole coalescences, Astrophys. J. Lett. 915, L5 (2021). https://doi.org/10.3847/2041-8213/ac082e
- Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, et al., GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run, Phys. Rev. X. 13, 041039 (2023a). https://doi.org/10.1103/PhysRevX.13.041039
- Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, et al., Population of merging compact binaries inferred using gravitational waves through GWTC-3, Phys. Rev. X. 13, 011048 (2023b). https://doi.org/10.1103/PhysRevX.13.011048
- Acernese F, Agathos M, Agatsuma K, Aisa D, Allemandou N, et al., Advanced Virgo: a second-generation interferometric gravitational wave detector, Class. Quantum Grav. 32, 024001 (2015). https://doi.org/10.1088/0264-9381/32/2/024001
- Antelis J, Moreno C, An independent search of gravitational waves in the first observation run of advanced LIGO using cross-correlation, Gen. Relativ. Gravit. 51, 61 (2019). https://doi.org/10.1007/s10714-019-2546-x
- Biwer CM, Capano C, De S, Cabero M, Brown D, et al., PyCBC inference: a python-based parameter estimation toolkit for compact binary coalescence signals, Publ. Astron. Soc. Pac. 131, 024503 (2019). https://doi.org/10.1088/1538-3873/aaef0b
- Bohe A, Shao L, Taracchini A, Buonanno A, Babak S, et al., Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational wave astrophysics with advanced detectors, Phys. Rev. D. 95, 044028 (2017). https://doi.org/10.1103/PhysRevD.95.044028
- Cahillane C, Mansell G, Review of the advanced LIGO gravitational wave observatories leading to observing run four, Galaxies, 10, 36 (2022). https://doi.org/10.3390/galaxies10010036
- Canton TD, Nitz AH, Lundgren A, Nielsen AP, Brown DA, et al., Implementing a search for aligned-spin neutron star-black hole systems with advanced ground based gravitational wave detectors, Phys. Rev. D. 90, 082004 (2014). https://doi.org/10.1103/PhysRevD.90.082004
- Chapman-Bird CEA, Berry CPL, Woan G, Rapid determination of LISA sensitivity to extreme mass ratio inspirals with machine learning, Mon. Not. R. Astron. Soc. 522, 6043-6054 (2023). https://doi.org/10.1093/mnras/stad1397
- Chawale MSA, Mohod SB, Chandak MDS, WCQMV: design of a wavelet compression based quadratic model for EEG classification using multivariate analysis, Int. J. Sci. Res. Sci. Technol. 9, 1-10 (2022). https://doi.org//10.32628/IJSRST229174
- Dreissigacker C, Sharma R, Messenger C, Zhao R, Prix R, Deeplearning continuous gravitational waves, Phys. Rev. D. 100, 044009 (2019). https://doi.org/10.1103/PhysRevD.100.044009
- Gabbard H, Williams M, Hayes F, Messenger C, Matching matched filtering with deep networks for gravitational-wave astronomy, Phys. Rev. Lett. 120, 141103 (2018). https://doi.org/10.1103/PhysRevLett.120.141103
- Gebhard TD, Kilbertus N, Harry I, Scholkop B, Convolutional neural networks: a magic bullet for gravitational-wave detection? Phys. Rev. D, 2019, 100, 063015. https://doi.org/10.1103/PhysRevD.100.063015
- George D, Huerta E, Deep Learning for real-time gravitational wave detection and parameter estimation: results with advanced LIGO data, Phys. Lett. B. 778, 64-70 (2018). https://doi.org/10.1016/j.physletb.2017.12.053
- Kang Y, Liu C, Shao L, Electromagnetic follow-up observations of binary neutron star mergers with early warnings from decihertz gravitational-wave observatories, Mon. Not. R. Astron. Soc. 515, 739-748 (2022). https://doi.org/10.1093/mnras/stac1738
- LIGO Scientific Collaboration, LALSuite: LIGO Scientific Collaboration Algorithm Library Suite, Astrophys. Source Code Libr. record ascl:2012.021 (2018). https://doi.org/10.7935/GT1W-FZ16
- Matas A, Dietrich T, Buonanno A, Hinderer T, Purrer M, et al., Aligned-spin neutron-star-black-hole waveform model based on the effective-one-body approach and numerical-relativity simulations, Phys. Rev. D. 102, 043023 (2020). https://doi.org/10.1103/PhysRevD.102.043023
- Messina F, Dudi R, Nagar A, Bernuzzi S, Quasi-5.5PN TaylorF2 approximant for compact binaries: point-mass phasing and impact on the tidal polarizability inference, Phys. Rev. D. 99, 124051 (2019). https://doi.org/10.1103/PhysRevD.99.124051
- Mitra A, Shukirgaliyev B, Abylkairov YS, Abdikamalov E, Exploring supernova gravitational waves with machine learning, Mon. Not. R. Astron. Soc. 520, 2473-2483 (2023). https://doi.org/10.1093/mnras/stad169
- Nalband S, Prince A, Agrawal A, Entropy-based feature extraction and classification of vibroartho-graphic signal using complete ensemble empirical mode decomposition with adaptive noise, IET Sci. Meas. Technol. 12, 350-359 (2018). https://doi.org/10.1049/iet-smt.2017.0284
- Ormiston R, Nguyen T, Coughlin M, Adhikari RX, Katsavounidis E, Noise reduction in gravitational-wave data via deep learning. Phys. Rev. Res. 2, 033066 (2020). https://doi.org/10.1103/PhysRevResearch.2.033066
- Qiu R, Krastev PG, Gill K, Berger E, Deep learning detection and classification of gravitational waves from neutron star-black hole mergers, Phys. Lett. B. 840, 137850 (2023). https://doi.org/10.1016/j.physletb.2023.137850
- Shannon CE, Weaver W, The Mathematical Theory of Communication (University of Illinois Press, Urbana, 1949).
- Usman SA, Nitz AH, Harry IW, Biwer CM, Brown DA, et al., The PyCBC search for gravitational waves from compact binary coalescence, Class. Quantum Grav. 33, 215004 (2016). https://doi.org/10.1088/0264-9381/33/21/215004
- Vartanyan D, Burrows A, Gravitational waves from neutrino emission asymmetries in core-collapse supernovae, Astrophys. J. 901, 108. (2020). https://doi.org/10.3847/1538-4357/abafac
- Wang H, Wu S, Cao Z, Liu X, Zhu JY, Gravitational-wave signal recognition of LIGO data by deep learning, Phys. Rev. D. 101, 104003 (2020). https://doi.org/10.1103/PhysRevD.101.104003
- Welch P, The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms, IEEE Trans. Audio Electroacoust. 15, 70-73 (1967). https://doi.org/10.1109/TAU.1967.1161901
- Yuan C, Murase K, Kimura SS, Meszaros P, High-energy neutrino emission subsequent to gravitational wave radiation from supermassive black hole mergers, Phys. Rev. D. 102, 083013(2020). https://doi.org/10.1103/PhysRevD.102.083013
- Yun Q, Han WB, Guo YY, Wang H, Du M, Detecting extrememass-ratio inspirals for space-borne detectors with deep learning, arXiv prepr. (2023). https://doi.org/10.48550/arXiv.2309.06694
- Zhanabaev Z, Ussipov NM, Information-entropy method for detecting gravitational wave signals, Eurasian Phys. Tech. J. 20, 79-86 (2023). https://doi.org/10.31489/2023NO2/79-86
- Zhang Z, Li Y, Jin S, Zhang Z, Wang H, et al., Modulation signal recognition based on information entropy and ensemble learning, Entropy, 20, 198 (2018). https://doi.org/10.3390/e20030198