DOI QR코드

DOI QR Code

Performance Test of Search Coil Sensors with Different Core Types

  • Hyeonji Kang (School of Space Research, Kyung Hee University) ;
  • Ho Jin (School of Space Research, Kyung Hee University) ;
  • Yunho Jang (School of Space Research, Kyung Hee University) ;
  • Seungmin Lee (School of Space Research, Kyung Hee University) ;
  • Hyeonhu Park (School of Space Research, Kyung Hee University) ;
  • Juhyeong Kim (School of Space Research, Kyung Hee University) ;
  • Wooin Jo (School of Space Research, Kyung Hee University)
  • Received : 2024.04.17
  • Accepted : 2024.08.05
  • Published : 2024.09.15

Abstract

A search coil magnetometer (SCM) is a common equipment to observe energy transmission and vibrations in space physics, enabling measurements across a wide frequency range of up to tens of kilohertz. This study proposes the designs of a magnetic core that allows a low-mass sensor and improves its performance: a rod core, sheet-stacked core, and rolling-sheet core. Subsequently, the performance of each sensor was investigated. The sheet-stacked core using the cobalt-based alloy exhibited the highest sensitivity, although it exhibited instability beyond 20 kHz. In contrast, the rod and rolling-sheet core sensors demonstrated stability in the magnetic field measurements (10 Hz-40 kHz). Moreover, the noise equivalent magnetic induction (NEMI) of the rod- and rolling-sheet core sensors were 0.014 pT Hz-1/2 and 0.012 pT Hz-1/2 at 1 kHz, respectively. The rolling-sheet core with high relative permeability achieved a mass reduction of over three times that of the rod core while exhibiting sufficient sensitivity.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT), NRF-2022M1A3B8076421.

References

  1. Acuna MH, Space-based magnetometers, Rev. Sci. Instrum. 73, 3717-3736 (2002). https://doi.org/10.1063/1.1510570 
  2. Auster HU, Glassmeier KH, Magnes W, Aydogar O, Baumjohann W, et al., The THEMIS fluxgate magnetometer, Space Sci. Rev. 141, 235-264 (2008). https://doi.org/10.1007/s11214-008-9365-9 
  3. Beleggia M, Vokoun D, de Graef M, Demagnetization factors for cylindrical shells and related shapes, J. Magn. Magn. Mater. 321, 1306-1315 (2009). https://doi.org/10.1016/j.jmmm.2008.11.046 
  4. Bennett JS, Vyhnalek BE, Greenall H, Bridge EM, Gotardo F, et al., Precision magnetometers for aerospace applications: a review, Sensors. 21, 5568 (2021). https://doi.org/10.3390/s21165568 
  5. Bozorth RM, Chapin DM, Demagnetizing factors of rods, J. Appl. Phys. 13, 320-326 (1942). https://doi.org/10.1063/1.1714873 
  6. Chen DX, Brug JA, Goldfarb RB, Demagnetizing factors for cylinders, IEEE Trans. Magn. 27, 3601-3619 (1991). https://doi.org/10.1109/20.102932 
  7. Chen L, Wave normal angle and frequency characteristics of magnetosonic wave linear instability, Geophys. Res. Lett. 42, 4709-4715 (2015). https://doi.org/10.1002/2015GL064237 
  8. Chen L, Thorne RM, Jordanova VK, Horne RB, Global simulation of magnetosonic wave instability in the storm time magnetosphere, J. Geophys. Res. Space Phys. 115, A11222 (2010). https://doi.org/10.1029/2010JA015707 
  9. Coillot C, Leroy P, Induction Magnetometers Principle, Modeling and Ways of Improvement in Magnetic Sensors: Principles and Applications, ed. Kuang K (InTechOpen, London, 2012). 
  10. Coillot C, Moutoussamy J, Lebourgeois R, Ruocco S, Chanteur G, Principle and performance of a dual-band search coil magnetometer: a new instrument to investigate fluctuating magnetic fields in space, IEEE Sens. J. 10, 255-260 (2010). https://doi.org/10.1109/JSEN.2009.2030977 
  11. Coillot C, Moutoussamy J, Leroy P, Chanteur G, Roux A, Improvements on the design of search coil magnetometer for space experiments, Sens. Lett. 5, 167-170 (2007). https://doi.org/10.1166/sl.2007.050 
  12. Fischer D, Magnes W, Hagen C, Dors I, Chutter MW, et al., Optimized merging of search coil and fluxgate data for MMS, Geosci. Instrum. Methods Data Syst. 5, 521-530 (2016). https://doi.org/10.5194/gi-5-521-2016 
  13. Grosz A, Paperno E, Amrusi S, Liverts E, Integration of the electronics and batteries inside the hollow core of a search coil, J. Appl. Phys. 107, 09E703 (2010). https://doi.org/10.1063/1.3337750 
  14. Gurnett DA, Principles of space plasma wave instrument design, vol. 103, Measurement Techniques in Space Plasmas: Fields, eds. Pfaff RF, Borovsky JE, Young DT (The American Geophysical Union, Washington, 1998), 121-136. 
  15. Hill LK, Micropulsation sensors with laminated MUMETAL cores, PhD Dissertation, University of Texas (1962). 
  16. Hospodarsky GB, Spaced-based search coil magnetometers, J. Geophys. Res. Space Phys. 121, 12068-12079 (2016). https://doi.org/10.1002/2016JA022565 
  17. Jannet G, Dudok de Wit T, Krasnoselskikh V, Kretzschmar M, Fergeau P, et al., Measurement of magnetic field fluctuations in the Parker solar probe and solar orbiter missions, J. Geophys. Res. Space Phys. 126, e2020JA028543 (2021). https://doi.org/10.1029/2020JA028543 
  18. Jo W, Jin H, Park H, Jang Y, Lee S, et al., Korea pathfinder lunar orbiter magnetometer instrument and initial data processing, J. Astron. Space Sci. 40, 199-215 (2023). 10.5140/JASS.2023.40.4.199 
  19. Kletzing CA, Kurth WS, Acuna M, MacDowall RJ, Torbert RB, et al., The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP, Space Sci. Rev. 179, 127-181 (2013). https://doi.org/10.1007/s11214-013-9993-6 
  20. Korepanov V, Marusenkov A, Flux-gate magnetometers design peculiarities, Surv. Geophys. 33, 1059-1079 (2012). https://doi.org/10.1007/s10712-012-9197-8 
  21. Le Contel O, Leroy P, Roux A, Coillot C, Alison D, et al., The search-coil magnetometer for MMS, Space Sci. Rev. 199, 257-282 (2014). https://doi.org/10.1007/s11214-014-0096-9 
  22. Lee H, Jin H, Jeong B, Lee S, Lee S, et al., KMAG: KPLO magnetometer payload, Publ. Astron. Soc. Pac. 133, 034506 (2021). https://doi.org/10.1088/1538-3873/abe55c 
  23. Lee J, Jin H, Kim KH, Park H, Jo W, et al., Correction of spacecraft magnetic field noise: initial Korean pathfinder lunar orbiter MAGnetometer observation in solar wind, Sensors. 23, 9428 (2023). https://doi.org/10.3390/s23239428 
  24. Lenz J, Edelstein S, Magnetic sensors and their applications, IEEE Sens. J. 6, 631-649 (2006). https://doi.org/10.1109/JSEN.2006.874493 
  25. Li J, Bortnik J, An X, Li W, Angelopoulos V, et al., Origin of two-band chorus in the radiation belt of Earth, Nat. Commun. 10, 4672 (2019). https://doi.org/10.1038/s41467-019-12561-3 
  26. Li W, Ma Q, Thorne RM, Bortnik J, Kletzing CA, et al., Statistical properties of plasmaspheric hiss derived from Van Allen probes data and their effects on radiation belt electron dynamics, J. Geophys. Res. Space Phys. 120, 3393-3405 (2015). https://doi.org/10.1002/2015JA021048 
  27. Ma Q, Li W, Bortnik J, Kletzing CA, Kurth WS, et al., Global survey and empirical model of fast magnetosonic waves over their full frequency range in Earth's inner magnetosphere, J. Geophys. Res. Space Phys. 124, 10270-10282 (2019). https://doi.org/10.1029/2019JA027407 
  28. Matsuoka A, Teramoto M, Nomura R, Nose M, Fujimoto A, et al., The ARASE (ERG) magnetic field investigation, Earth Planets Space. 70, 43 (2018). https://doi.org/10.1186/s40623-018-0800-1 
  29. Miles DM, Narod BB, Milling DK, Mann IR, Barona D, et al., A hybrid fluxgate and search coil magnetometer concept using a racetrack core, Geosci. Instrum. Methods Data Syst. 7, 265-276 (2018). https://doi.org/10.5194/gi-7-265-2018 
  30. Ozaki M, Yagitani S, Kasahara Y, Kojima H, Kasaba Y, et al., Magnetic search coil (MSC) of plasma wave experiment (PWE) aboard the Arase (ERG) satellite, Earth Planets Space. 70, 76 (2018). https://doi.org/10.1186/s40623-018-0837-1 
  31. Park HH, Jin H, Kim TY, Kim KH, Lee HJ, et al., Analysis of the KPLO magnetic cleanliness for the KMAG instrument, Adv. Space Res. 69, 1198-1204 (2022). https://doi.org/10.1016/j.asr.2021.11.015 
  32. Parks GK, A perspective of E+VxB=0 from the special theory of relativity, in Multiscale Coupling of Sun-Earth Processes, eds. Lui ATY, Kamide Y, Consolini G (Elsevier Science, Amsterdam, 2005), 365-373. 
  33. Ripka P, Magnetic Sensors and Magnetometers (Artech House, Norwood, 2001). 
  34. Roux A, Le Contel O, Coillot C, Bouabdellah A, de la Porte B, et al., The search coil magnetometer for THEMIS, Space Sci. Rev. 141, 265-275 (2008). https://doi.org/10.1007/s11214-008-9455-8 
  35. Russell CT, Anderson BJ, Baumjohann W, Bromund KR, Dearborn D, et al., The magnetospheric multiscale magnetometers, Space Sci. Rev. 199, 189-256 (2016). https://doi.org/10.1007/s11214-014-0057-3 
  36. Seran HC, Fergeau P, An optimized low-frequency three-axis search coil magnetometer for space research, Rev. Sci. Instrum. 76, 044502 (2005). https://doi.org/10.1063/1.1884026 
  37. Shin J, Kim KH, Jin H, Kim H, Kwon JW, et al., Development of ground-based search-coil magnetometer for near-Earth space research, J. Magn. 21, 509-515 (2016). https://doi.org/10.4283/JMAG.2016.21.4.509 
  38. Sun K, Yu J, Cao J, Liu L, Wang S, A novel core structure of innerringed multi-pitch rods for lightweight induction coil sensor design, J. Magn. Magn. Mater. 552, 169080 (2022). https://doi.org/10.1016/j.jmmm.2022.169080 
  39. Tumanski S, Induction coil sensors: a review, Meas. Sci. Technol. 18, R31-R46 (2007). https://doi.org/10.1088/0957-0233/18/3/r01