DOI QR코드

DOI QR Code

하천 연속성의 개념과 평가: 국외 사례 비교를 통한 국내 적용성 고찰

The Concept and Assessment of River Continuity: Review of Global Trends for Domestic Application

  • 최예림 (경희대학교 환경학및환경공학과) ;
  • 이대희 (경희대학교 환경학및환경공학과) ;
  • 유경아 (국립환경과학원 물환경연구부) ;
  • 장광현 (경희대학교 환경학및환경공학과) ;
  • 김정희 (주식회사 에코리서치)
  • Yerim Choi (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Dae-Hee Lee (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Kyung-A You (Water Environment Research Department, National Institute of Environmental Research) ;
  • Kwang-Hyeon Chang (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Jeong-Hui Kim (EcoResearch Incorporated)
  • 투고 : 2024.09.19
  • 심사 : 2024.09.25
  • 발행 : 2024.09.30

초록

최근 하천 생태계 관리에서 물, 퇴적물, 영양염류와 같은 물질의 연속적 흐름뿐만 아니라 서식 생물의 자유로운 이동을 통해 생물 서식처를 보존할 수 있도록 하천의 연속성을 평가하고 단절된 연속성을 복원하는 것이 핵심으로 인식되고 있다. 하천 연속성의 단절은 주로 댐, 보와 같은 하천 내 인공구조물로 인해 발생되며 국내 4대강 권역에 위치한 보는 34,012개로 최근 환경부에서는 이와 같은 하천 수생태계 연속성 단절에 대한 심각성을 인지하고 하천 수생태계 연속성 확보를 위한 평가와 복원을 통합 물관리의 주요 정책 중 하나로 채택하고 관리 방안의 마련을 위해 지속적으로 노력하고 있다. 본 연구에서는 향후 국내 실정에 맞는 장기적인 수생태계 연속성 확보를 위한 방향 설정과 표준화된 평가 방법 확립에 도움이 되고자 일찍이 하천 연속성에 대한 평가 및 복원 지침을 제시한 일본, 미국, 유럽연합(EU)을 대상으로 해당 국가들에서 제시하고 있는 하천 연속성의 개념과 복원의 방향성, 연속성을 평가할 수 있는 종합적인 평가 방법을 비교, 분석하였다. 각 국가별로 서로 다른 하천 연속성 확보의 목표와 평가 지침을 가지고 있는 것으로 분석되었는데, 일본의 경우에는 생물 서식처 개념에서 하천과 유역의 연속성 확보에 초점을 맞추고 있으며, 미국의 경우에는 유역 전체에서 하천 생태계의 구조와 기능에 초점을 맞춘 연속성 평가 및 복원 방안을 제시하고 있다. EU는 생물다양성 확보를 위하여 서식처 개념에서의 하천의 연속성의 중요성을 강조, 자유 흐름 하천을 확보할 수 있는 방안에 대해 제시하고 있다. 본 논문은 하천 연속성 확보에 대한 개념적 접근과 실무적 적용 방안을 동시에 파악할 수 있도록 하여 국내 환경에 적합한 거시적이고 전략적인 목표의 설정과 종합적인 평가 방법의 개발에 도움이 될 것으로 기대된다.

Recently, Korean government has incorporated the assessment and restoration of river continuity as a key component of its integrated water management policy. While, methodologies for evaluating discontinuities and degradation, as well as the procedures for assessment and restoration, have been developed and proposed, there is a need for further improvement. Therefore, further research is required to establish a conceptual framework for continuity specific to domestic river ecosystems and to formulate appropriate assessment methods and restoration strategies. In this study we conduct a comparative analysis of the concepts, restoration approaches, and comprehensive evaluation methods for river continuity as proposed by Japan, the United States, and the European Union (EU), all of which have long-standing frameworks for river continuity assessment and restoration projects. Each country demonstrates distinct objectives and guidelines: Japan emphasizes habitat continuity within the context of river and watershed continuity, the United States integrates continuity as a tool for watershed management, and the EU prioritizes biodiversity conservation by advocating for the removal of artificial barriers and promoting the restoration of free-flowing rivers (FFR). By investigating these international examples, this study provides insights that can guide the development of long-term strategies and evaluation criteria for securing aquatic ecosystem continuity in Korea.

키워드

과제정보

본 연구는 국립환경과학원 연구사업의 지원을 받아 수행하였습니다(NIER-2023-01-02-061).

참고문헌

  1. Benda, L., N.L. Poff, D. Miller, T. Dunne, G, Reeves, G. Pess and M. Pollock. 2004. The network dynamics hypothesis: How channel networks structure riverine habitats. BioScience 54: 413-427. 
  2. Bunn, S.E. and A.H. Arthington. 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492-507. 
  3. Cha, S.B., J.U. Seong, J.O. Kim and J.C. Park. 2015. Evaluation of fish migration ratio at the fishway constructed in weir. Journal of Environmental Science International 24(2): 229-236. 
  4. Duarte, G., P. Segurado, G. Haidvogl, D. Pont, M.T. Ferreira and P. Branco. 2021. Damn those damn dams: fluvial longitudinal connectivity impairment for European diadromous fish throughout the 20th century. Science of The Total Environment 761: 143293. 
  5. Elwood, J.W., J.D. Newbold, R.V. O'Neill and W. Van Winkle. 1983. Resource spiralling: An operational paradigm for analyzing lotic ecosystems. Ann Arbor Science Publishers. pp. 3-23. 
  6. EUROPAI, A. and U. TANACSA. 2000. Directive 2000/60/EC of the European parliament and of the council. 
  7. Hara, Y., F. Hooimeijer, S. Nijhuis, M. Ryu and A. van Timmeren. 2014. The impact of historical geography and agricultural land development processes on wetland restoration methods used to create ecological networks: a comparison of Japan and the Netherlands. Journal of Environmental Design and Planning 10(1): 10. 
  8. Harman, W., R. Starr, M. Carter, K. Tweedy, M. Clemmons, K. Suggs and C. Miller. 2012. A function-based framework for stream assessment and restoration projects. US Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Washington, DC. 
  9. Ikeuchi, K. and K. Kanao. 2003. The approach and the issue to conservation and restoration for river environment in Japan. Ecology and Civil Engineering 5(2): 205-216. 
  10. Jain, V. and S.K. Tandon. 2010. Conceptual assessment of (dis) continuity and its application to the Ganga River dispersal system. Geomorphology 118: 349-358. 
  11. Japan Ministry of Land, Infrastructure, Transport and Tourism. 2005. Guidelines for creating fish-friendly rivers. 
  12. Japan Ministry of Land, Infrastructure, Transport and Tourism. 2017. Strategy for river environment maintenance and conservation: verification of measures after the revision of the River Act and future directions. Policy Review Outcome Report. 
  13. Japan Ministry of Land, Infrastructure, Transport and Tourism. 2021. Evaluation guidelines for ecosystem conservation in rive projects (draft for practitioners): Formation of ecosystem networks. Water Management and National Land Conservation Bureau, River Environment Division. 
  14. Jonathon, L. and S. Eileen. 2012. Reconnecting rivers to floodplain. American Rivers. 
  15. Junk, W.J., P.B. Bayley and R.E. Sparks. 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110-127. 
  16. Kim, J.H., J.D, Yoon, S.H. Park, S.H. Baek, H.J. Lee, K.J. Kim and M.H. Jang. 2020. The impact of weirs on fish assemblage according to stream order in wadeable stream. Korean Journal of Ecology and Environment 53(2): 148-155. 
  17. Kim, S.H., H.T. Cheon and K.H. Cho. 2015. Fish community structure of the former channel isolated by channelization in the Mangyeong River, Korea; implications for connectivity restoration. Ecology and Resilient Infrastructure 2(1): 22-32. 
  18. Kristensen, P., C. Whalley, F.N.N. Zal and T. Christiansen. 2018. European waters assessment of status and pressures 2018. 
  19. Large, A.R. and G.E. Petts. 1996. Historical channel-floodplain dynamics along the River Trent: implications for river rehabilitation. Applied Geography 16(3): 191-209. 
  20. Lee, K.Y., H. Jang and J. Choi. 2010. River continuum Pattern of Palmi Stream by fish community. Journal of the Environment 7(1): 67-74. 
  21. Lee, K.Y., H.K. Lee, Y.K. Oh, J.C. Kim and J.S. Choi. 2018. Distribution of fish community and discontinuity of inspection of river continuity in Yangyangnamdae stream, Korea. Journal of the Environment 13(1): 17-30. 
  22. Leviandier, T., A. Alber, F. Le Ber and H. Piegay. 2012. Comparison of statistical algorithms for detecting homogeneous river reaches along a longitudinal continuum. Geomorphology 138: 130-144. 
  23. McRae, B.H. and P. Beier. 2007. Circuit theory predicts gene flow in plant and animal populations. Proceedings of the National Academy of Sciences of the United States of America 104(50): 19885-19890. 
  24. Montoya, J.M., S.L. Pimm and R.V. Sole. 2006. Ecological networks and their fragility. Nature 442: 259-264. 
  25. Newbold, J.D., J.W. Elwood, R.V. Oneill and W. Van winkle. 1981. Measuring nutrient spiralling in streams. Canadian Journal of Fisheries and Aquatic Sciences 38: 860-863. 
  26. Parasiewicz, P., K. Belka, M. Lapinska, K. Lawniczak, P. Prus, M. Adamczyk, P. Buras, J. Szlakowski, Z. Kaczkowski, K. Krauze, J. O'Keeffe, K. Suska, J. Ligieza, A. Melcher, J. O'Hanley, K. Birnie-Gauvin, K. Aarestrup, P.E. Jones, J. Jones, C.G. de Leaniz, J.S. Tummers, S. Consuegra, P. Kemp, H. Schwedhelm, Z. Popek, G. Segura, S. Vallesi, M. Zalewski and W. Wisniewolski. 2023. Over 200,000 kilometers of free-flowing river habitat in Europe is altered due to impoundments. Nature Communications 14: 6289. 
  27. Pettit, N.E., R.J. Naiman, D.M. Warfe, T.D. Jardine, M.M. Douglas, S.E. Bunn and P.M. Davies. 2017. Productivity and connectivity in tropical riverscapes of northern Australia: ecological insights for management. Ecosystems 20: 492-514. 
  28. Rinaldi, M., M. Bussettini, N. Surian, F. Comiti and A.M. Gurnell. 2016. Guidebook for the evaluation of stream morphological conditions by the Morphological Quality Index (MQI). 
  29. Thieme, M., K. Birnie-Gauvin, J.J. Opperman, P.A. Franklin, H. Richter, L. Baumgartner and S.J. Cooke. 2023. Measures to safeguard and restore river connectivity. Environmental Reviews 32(3): 366-386. 
  30. US Army Corps of Engineers (USACE). 2016. HEC-RAS River Analysis System. Hydraulic Reference Manual version 5.0. 
  31. U.S. EPA. 2015. Connectivity of Streams and Wetlands To Downstream Waters: A Review and Synthesis of the Scientific Evidence (Final Report). US Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Washington, DC. 
  32. Van de Bund, W., T. Bartkova, K. Belka, M. Bussettini, B. Calleja, T. Christiansen, ... and V. Bastino. 2024. Criteria for identifying free-flowing river stretches for the EU Biodiversity Strategy for 2030. 
  33. Vannote, R.L., G.W. Minshall, K.W. Cummins, J.R. Sedell and C.E. Cushing. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37(1): 130-137. 
  34. Ward, J.V. 1989. The four-dimensional nature of lotic ecosystems. Journal of the North American Benthological Society 8: 2-8. 
  35. Ward, J.V. and J.A. Stanford. 1983. The serial discontinuity concept of lotic ecosystems. Ann Arbor Science, pp. 29-42. 
  36. Webster, J.R. and B.C. Patten. 1979. Effects of watershed perturbation on stream potassium and calcium dynamics. Ecological Monographs 49: 51-72. 
  37. Wohl, E. 2017. Connectivity in rivers. Progress in Physical Geography 41(3): 345-362. 
  38. Won, D.H., D.H. Hoang, Y.H. Jin, J.M. Hwang and Y.J. Bae. 2003. Community composition and functional feeding groups of aquatic insects according to stream order from the Gapyeong Creek in Gyeonggi-do, Korea. Korean Journal of Ecology and Environment 36(1): 21-28.