DOI QR코드

DOI QR Code

Study on Depth Estimation and Characteristic Analysis of Underwater Source Based on Deep-Sea Broadband Signal Modeling

심해역 광대역 신호 모델링 기반 수중 음원의 심도 추정 및 특성 분석 연구

  • Sunhyo Kim (Marine Domain & Security Research Department, Korea Institute of Ocean Science & Technology) ;
  • Hansoo Kim (Marine Domain & Security Research Department, Korea Institute of Ocean Science & Technology) ;
  • Donhyug Kang (Marine Domain & Security Research Department, Korea Institute of Ocean Science & Technology) ;
  • Sungho Cho (Marine Domain & Security Research Department, Korea Institute of Ocean Science & Technology)
  • 김선효 (한국해양과학기술원 해양영토.방위연구부) ;
  • 김한수 (한국해양과학기술원 해양영토.방위연구부) ;
  • 강돈혁 (한국해양과학기술원 해양영토.방위연구부) ;
  • 조성호 (한국해양과학기술원 해양영토.방위연구부)
  • Received : 2024.05.22
  • Accepted : 2024.07.24
  • Published : 2024.10.05

Abstract

Studies on estimating the underwater sound source localization using acoustic signal characteristics have mainly been conducted in shallow waters. Recently, technologies for stably and efficiently estimating the underwater sound sources localization using the underwater sound propagation characteristics of the Reliable Acoustic Path(RAP) in deep water areas are being studied. Underwater surveillance technology in deep sea areas is known to have the advantage of having low detection performance variability due to time-varying underwater environments and having a small shadow zone, making it easy to stably detect underwater sound sources and estimate location even from relatively long distance. In this study, we analyzed the sound propagation characteristics based on the actual marine environment in the deep sea of the Korean Peninsula and conducted a study to analyze the estimation performance of sound source depth using the broadband interference pattern of direct wave and sea surface reflected waves radiating from underwater sound sources.

Keywords

Acknowledgement

본 연구는 2024년 정부(방위사업청)의 재원으로 국방기술진흥연구소(KRIT)의 지원을 받아 수행된 연구임(KRIT-CT-22-056, 과제명 : 해양생물음 기반 음향탐지 M&S 기법 및 가시화 기법 연구)

References

  1. B. Nicolas, J. Mars, and J-L. Lacoume, "Source depth estimation using matched field processing and frequency-wavenumber transform," IEEE/MTS Oceans, San Diego, USA, 2003.
  2. D. Zhai, B. Zhang, F. Li, Y. Zhang, and X. Yang, "Passive source depth estimation in shallow water using two horizontally separated hydrophones," Applied acoustics, Vol. 192, 2022.
  3. T. C. Yang, "Source depth estimation based on synthetic aperture beamfoming for a moving source," J. Acoust. Soc. Am., Vol. 138, No. 3, pp. 1678-1686, 2015.
  4. E. Conan, J. Bonnel, T. Chonavel, and B. Nicolas, "Source depth discrimination with a vertical line array," J. Acoust. Soc. Am., Vol. 140, No. 5, EL434, 2016.
  5. R. Cao, K. Yang, Y. Ma, Q. Yang, and Y. Shi, "Passive broadband source localization based on a Riemannian distance with a short vertical array in the deep ocean," J. Acoust. Soc. Am., Vol. 145, No. 6, EL567, 2019.
  6. H. Li, T. Wang, L. Su, X. Guo, C. Wang, and L. Ma, "Passive depth estimation for a narrowband source using a single vector sensor in deep water," J. Acoust. Soc. Am., Vol. 3, No. 6, p. 066002, 2023.
  7. K. Yang, L. Xu, Q. Yang, and R. Duan, "Striation-based source depth estimation with a vertical line array in the deep ocean," J. Acoust. Soc. Am., Vol. 143, No. 1, EL8-12, 2018.
  8. Y. Liang, Y. Chen, Z. Meng, X. Zhou, and Y. Zhang, "A Deep-Sea Broadband Sound Source Depth Estimation Method Based on the Interference Structure of the Compensated Beam Output," J. Mar. Sci. Eng. Vol. 11, No. 11, pp. 1-18, 2023.
  9. G. P. Kniffin, J. K. Boyle, L. M. Zurk, and M. Siderius, "Performance metrics for depth-based signal separation using deep vertical line arrays," J. Acoust. Soc. Am., Vol. 139, No. 1, pp. 418-425, 2016.
  10. W. Kim, C. Cho, J. Park, J. Hahn, and Y. Na, "Effects of Warm Eddy on Long-range Sound Propagation in the East Sea," (in Korean) J. Acoust. Soc. Kr., Vol. 34, No. 6, pp. 455-462, 2015.
  11. D. Kim, H. Park, J. S. Kim, and J. y. Hahn, "Application of ray-based blind deconvolution to long-range acoustic communication in deep water,"  (in Korean) J. Acoust. Soc. Kr., Vol. 41, No. 2, pp. 242-253, 2022.
  12. H. Kim, and J. Choi, "A Study on the Detection Performances of the Integrated Sonar System Operated by Surface Vessel in the Mesoscale Eddy in the Southwestern East Sea," (in Korean) J. Korea Society for Naval Science & Technology, Vol. 3, No. 1, pp. 20-45, 2020.
  13. R. J. Urick, "Principles of Underwater Sound 3rd Edition," McGraw-Hill Book Company, New York, 1983.
  14. F. Jensen, W. Kuperman, M. Poter and H. Schmidt, "Computational Ocean Acoustics," New York, 1993.
  15. M. D. Collins, "User's Guide for RAM Versions 1.0 and 1.0p," Technical report, Naval Research Laboratory, Washington, pp. 1-14, 1995.
  16. F. Jacobsen, "Sound Intensity," In Springer Handbook of Acoustics; Rossing, T.D., Ed.; Springer Science + Business Media: New York, NY, USA, Chapter 25, pp. 1053-1075, 2007.
  17. D. R. Dall'Osto, and P. H. Dahl, "Elliptical acoustic particle motion in underwater waveguides," J. Acoust. Soc. Am., Vol. 134, No. 1, pp. 109-118, 2013.
  18. D. R. Dall'Osto, P. H. Dahl, and J. W. Choi, "Properties of the acoustic intensity vector field in a shallow water waveguide," J. Acoust. Soc. Am., Vol. 131, No. 3, pp. 2023-2035, 2012.
  19. S. Kim, and J. W. Choi, "Optimal Deployment of Vector Sensor Nodes in Underwater Acoustic Sensor Networks," Sensors, Vol. 19, pp. 1-10, 2019.
  20. J. M. Hovem, T. V. Tronstad, H. E. Karlsen, and S. Lokkeborg, "Modeling Propagation of Seismic Airgun Sound and the Effects on Fish Behavior," IEEE J. Ocean. Eng., Vol. 37, No. 4, pp. 576-588, Jan. 2012.