DOI QR코드

DOI QR Code

Thermoelectric Properties of In and Cr Co-Doped BiSbTe3

In, Cr 동시 도핑에 따른 BiSbTe3 소재의 열전성능지수 증대

  • Changwoo Lee (Department of Materials Science and Engineering, University of Seoul) ;
  • Junsu Kim (Department of Materials Science and Engineering, University of Seoul) ;
  • Minsu Heo (Department of Materials Science and Engineering, University of Seoul) ;
  • Sang-il Kim (Department of Materials Science and Engineering, University of Seoul) ;
  • Hyun-Sik Kim (Department of Materials Science and Engineering, University of Seoul)
  • 이창우 (서울시립대학교 신소재공학과) ;
  • 김준수 (서울시립대학교 신소재공학과) ;
  • 허민수 (서울시립대학교 신소재공학과) ;
  • 김상일 (서울시립대학교 신소재공학과) ;
  • 김현식 (서울시립대학교 신소재공학과)
  • Received : 2024.08.29
  • Accepted : 2024.09.19
  • Published : 2024.09.27

Abstract

We conducted a study on excessive doping of the Cr and In elements in Bi-Sb-Te materials satisfying the Hume-Rothery rule, and investigated the resulting electrical and thermal properties. From X-ray diffraction (XRD) results, we confirmed the formation of a single phase even with excessive doping. Through analysis of electrical properties, we observed the highest enhancement in electrical characteristics at y = 0.2, suggesting that the appropriate ratio of Bi-Sb significantly influences this enhancement. Using the Callaway-von Baeyer (CvB) model to assess scattering due to point defects, we calculated the experimental point defect scattering factor (ΓCvB.exp), which was notably high due to the substantial differences in volume and atomic weight between the substituted (Cr, In) and original (Bi, Sb) elements. Additionally, we conducted a single parabolic band (SPB) modeling analysis of materials with compositions y = 0.1 and 0.2, where, despite a decrease in density-of-states effective mass (md*) during the enhancement process from y = 0.1 to 0.2, a sharp increase in non-degenerate mobility (μ0) led to an 88 % increase in weighted mobility (μw). Furthermore, analyzing zT with respect to nH revealed a 51 % increase in zT at a composition of y = 0.2. This study confirmed a significant reduction in lattice thermal conductivity with the co-doping strategy, and with further compositional studies to improve electrical properties, we anticipate achieving high zT.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2023-00212959).

References

  1. L. E. Bell, Science, 321, 1457 (2008). 
  2. G. D. Mahan and J. O. Sofo, Proc. Natl. Acad. Sci. U. S. A., 93, 7436 (1996). 
  3. Y. Pei, H. Wang and G. J. Snyder, Adv. Mater., 24, 6125 (2012). 
  4. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen and G. J. Snyder, Nature, 473, 66 (2011). 
  5. K. H. Lee, S. Kim, H. S. Kim and S. W. Kim, ACS Appl. Energy Mater., 3, 2214 (2020). 
  6. C. Wan, Y. Wang, N. Wang, W. Norimatsu, M. Kusunoki and K. Koumoto, Sci. Technol. Adv. Mater., 11, 044306 (2010). 
  7. T. Xing, C. Zhu, Q. Song, H. Huang, J. Xiao, D. Ren, M. Shi, P. Qiu, X. Shi, F. Xu and L. Chen, Adv. Mater., 33, 2008773 (2021). 
  8. K. H. Lee, Y. M. Kim, C. O. Park, W. H. Shin, S. W. Kim, H. S. Kim and S. I. Kim, Mater. Today Energy, 21, 100795 (2021). 
  9. P. Y. Deng, K. K. Wang, J. Y. Du and H. J. Wu, Adv. Funct. Mater., 30, 2005479 (2020). 
  10. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. P. Fleurial and P. Gogna, Adv. Mater., 19, 1043 (2007). 
  11. S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder and S. W. Kim, Science, 348, 109 (2015). 
  12. R. Funahashi, T. Barbier and E. Combe, J. Mater. Res., 30, 2544 (2015). 
  13. S. H. Kwon, S. I. Kim, M. Heo, W. S. Seo, J. W. Roh, H. Yang and H. S. Kim, Korean J. Met. Mater., 61, 198 (2023). 
  14. H. S. Kim, N. A. Heinz, Z. M. Gibbs, Y. Tang, S. D. Kang and G. J. Snyder, Mater. Today, 20, 452 (2017). 
  15. M. Kim, S. I. Kim, S. W. Kim, H. S. Kim and K. H. Lee, Adv. Mater., 33, 2005931 (2021). 
  16. V. P. Zlomanov, M. S. Sheiman and B. Legendre, J. Phase Equilib. Diffus., 22, 339 (2001). 
  17. G. Chattopadhyay, J. Phase Equilib. Diffus., 15, 431 (1994). 
  18. H. S. Kim, Z. M. Gibbs, Y. Tang, H. Wang and G. J. Snyder, APL Mater., 3, 041506 (2015). 
  19. R. Chen, Q. Jiang, L. Jiang, R. Min, H. Kang, Z. Chen, E. Guo, X. Yang and T. Wang, Chem. Eng. J., 455, 140676 (2023). 
  20. J. Callaway and H. C. von Baeyer, Phys. Rev. Lett., 120, 1149 (1960). 
  21. T. Li, J. Pu, T. Yu, Z. Hu and X. Shao, New J. Chem., 47, 13309 (2023). 
  22. G. J. Snyder and E. S. Toberer, Nat. Mater., 7, 105 (2008). 
  23. M. Heo, S. H. Kwon, S. I. Kim, H. Park, K. H. Lee and H. S. Kim, J. Alloys Compd., 954, 170144 (2023). 
  24. G. J. Snyder, A. H. Snyder, M. Wood, R. Gurunathan, B. H. Snyder and C. Niu, Adv. Mater., 32, 2001537 (2020).