DOI QR코드

DOI QR Code

Exploring the Impact of Environmental Factors on Fermentation Trends: A Google Trends Analysis from 2020 to 2024

  • Won JOO (KinK Cosmetics) ;
  • Eun-Ah CHEON (KinK Cosmetics)
  • Received : 2024.10.03
  • Accepted : 2024.10.17
  • Published : 2024.12.30

Abstract

Purpose: This study analyzes factors influencing public interest in fermentation using Google search trends. Specifically, it examines how key elements such as oxygen, temperature, time, and pH influence fermentation-0related searches from December 2020 to September 2024. Research design, data and methodology: Data from Google Trends was collected under the Beauty & Fitness category for the terms "Fermentation," "Oxygen," "Temperature," "Time," and "pH." Time series analysis was used to track trends over four years, and a correlation analysis was conducted to assess the relationships between these terms. A linear regression model was built to determine the influence of each factor on fermentation-related searches. The dataset was split into 80% training data and 20% testing data for model validation. Results: The correlation analysis indicated moderate positive relationships between fermentation-related searches and both time and pH, while oxygen had little to no correlation. The regression model showed that time and pH were the strongest influencers of fermentation interest, explaining 25% of the variance (R-squared = 0.25). Oxygen and temperature had minimal impact in predicting fermentation-related search interest. Conclusions: Time and pH are significant factors influencing public interest in fermentation-related topics, as shown by search trends. In contrast, oxygen and temperature, while important in the fermentation process itself, did not strongly affect public search behavior. These findings provide valuable insights for businesses and researchers looking to better understand consumer interest in fermentation products.

Keywords

References

  1. Admassie, M. (2018). A Review on Food Fermentation and the Biotechnology of Lactic Acid Bacteria. World Journal of Food Science and Technology, 2(1), 19-24. 
  2. Axelsson, L. (2004). Lactic acid bacteria: Classification and physiology. Food Science and Biotechnology, 13(4), 231-239. DOI: [10.1007/s10295-004-0098-2] 
  3. Beech, I. B., & Sunner, J. A. (2004). Biocorrosion: Towards Understanding Interactions Between Biofilms and Metals. Current Opinion in Biotechnology, 15(3), 181-186. https://doi.org/10.1016/j.copbio.2004.05.001 
  4. Blajda, J., Kucab, A., Miazga, A., Maslowski, M., Kopanska, M Nowak, A., & Barnas, E. (2023). Google Trends Analysis Reflecting Internet Users' Interest in Selected Terms of Sexual and Reproductive Health in Ukraine. Healthcare, 11(11), 1541; https://doi.org/10.3390/healthcare11111541 
  5. Choi, H., & Varian, H. (2012). Predicting the Present with Google Trends. Economic Record, 88(s1), 2-9. 
  6. Domzal-Kedzia, M., Lewinska, A., Jaromin, A., Weselski, M., Pluskota, R., & Lukaszewicz, M. (2019). Fermentation parameters and conditions affecting levan production and its potential applications in cosmetics Author links open overlay panel. Bioorganic Chemistry, 93, 102787. 
  7. Fatima, S., & Rahimi, A. (2024). A Review of Time-Series Forecasting Algorithms for Industrial Manufacturing Systems. Machines, 12(6), 380. https://doi.org/10.3390/machines12060380 
  8. Gadd, G. M. (2007). Geomycology: Biogeochemical Transformations of Rocks, Minerals, Metals and Radionuclides by Fungi, Bioweathering and Bioremediation. Mycological Research, 111(1), 3-49. https://doi.org/10.1016/j.mycres.2006.12.001 
  9. Ganzle, M. G. (2015). Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science, 2, 106-117. DOI: [10.1016/j.cofs.2015.03.001] 
  10. Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012-1014. 
  11. Goel, S., Hofman, J. M., Lahaie, S., Pennock, D. M., & Watts, D. J. (2010). Predicting consumer behavior with web search data. Proceedings of the National Academy of Sciences, 107(41), 17486-17490. 
  12. Heller , K. (2001). Probiotic bacteria in fermented foods: product characteristics and starter organisms. Journal of Clinical Nutrition, 73(2 Suppl), 374S-379S. doi: 10.1093/ajcn/73.2.374s.. 
  13. Itto-Nakama, K., Watanabe,S., Kondo, N., Ohnuki, S., Kikuchi, R., Nakamura, T., Ogasawara, W., Kasahara, K. & Ohya, Y. (2021). AI-based forecasting of ethanol fermentation using yeast morphological data. Bioscience, Biotechnology, and Biochemistry, 86(1), 125-134. https://doi.org/10.1093/bbb/zbab188 
  14. Janka, D., Lenders, F., Wang, S., Cohen, A., & Li, N. (2019). Detecting and locating patterns in time series using machine learning. Control Engineering Practice, December, 104169.
  15. Javaherdashti, R. (2008). Microbiologically Influenced Corrosion: An Engineering Insight. Springer, https://doi.org/10.1007/978-1-4020-6800-3 
  16. Lakhal, R., Auria, R., Davidson, S., Ollivier, B., Dolla, A., Hamdi, M., & Combet-Blanc, Y. (2010). Effect of Oxygen and Redox Potential on Glucose Fermentation in Thermotoga maritima under Controlled Physicochemical Conditions. International Journal of Microbiology, 896510. doi: 10.1155/2010/896510 
  17. Leeuwendaal, N., Stanton, C., O'Toole, P., & Beresford1, T. (2022). Fermented Foods, Health and the Gut Microbiome. Nutrients, Apr; 14(7), 1527. 
  18. Lin, Y., & Tanaka, S. (2006). Ethanol fermentation from biomass resources: current state and prospects. Applied Microbiology and Biotechnology, 69, 627-642. DOI 10.1007/s00253-005-0229-x 
  19. Moonga, H., Schoustra, S., Linnemann, A., Heuvel, J., Shindano, J., & Smid, E. (2021). Influence of fermentation temperature on microbial community composition and physicochemical properties of mabisi, a traditionally fermented milk. LWT, 136, January , 110350. 
  20. Olson, G. J., Brierley, J. A., & Brierley, C. L. (2003). Bioleaching Review Part B: Progress in Bioleaching: Applications of Microbial Processes by the Minerals Industries. Applied Microbiology and Biotechnology, 63(3), 249-257. https://doi.org/10.1007/s00253-003-1452-4 
  21. Rault, A., Bouix, M., & Beal1, C. (2009). Fermentation pH Influences the Physiological-State Dynamics of Lactobacillus bulgaricus CFL1 during pH-Controlled Culture. Applied and Environmental Microbiology, Jul; 75(13), 4374-4381. 
  22. Rawlings, D. E., & Johnson, D. B. (2007). The Microbiology of Biomining: Development and Optimization of Mineral-Oxidizing Microbial Consortia. Microbiology, 153(2), 315-324. https://doi.org/10.1099/mic.0.29241-0 
  23. Roell, G., Sathish, A., Wan, N., Cheng, Q., Wen, Z., Tang, Y., & Bao, F. (2022). A comparative evaluation of machine learning algorithms for predicting syngas fermentation outcomes. Biochemical Engineering Journal, 186, August, 108578. 
  24. Rolle, R., & Satin, M. (2002). Basic requirements for the transfer of fermentation technologies to developing countries. International Journal of Food Science and Technology, 37(4), 405-412. DOI: [10.1046/j.1365-2621.2002.00597.x] 
  25. Sadh, P., Kumar, S., Chawla, P., & Duhan, J. (2018). Fermentation: A Boon for Production of Bioactive Compounds by Processing of Food Industries Wastes (By-Products). Molecules. Oct; 23(10), 2560. 
  26. Salar-Garcia, M., Ortiz-Martinez, V. Sanchez-Segado, S., Sanchez, R., Lopez, A., Blanco, L., & Godinez-Seoane, C. (2024). Sustainable Production of Biofuels and Biochemicals via Electro-Fermentation Technology. Molecules, 29(4), 834. https://doi.org/10.3390/molecules29040834 
  27. Sayah, I., Gervasi, C., Achour, S., & Gervasi, T. (2024). Fermentation Techniques and Biotechnological Applications of Modified Bacterial Cellulose: An Up-to-Date Overview. Fermentation, 10(2), 100, https://doi.org/10.3390/fermentation10020100 
  28. Schmidt F. (2005). Optimization and scale up of industrial fermentation processes. Applied Microbiology and Biotechnology, Sep;68(4), 425-35. doi: 10.1007/s00253-005-0003-0. Epub 2005 Oct 26. 
  29. Sharma, I., & Yaiphathoi, S. (2020). Chapter 19 - Role of microbial communities in traditionally fermented foods and beverages in North East India. Recent Advancements in Microbial Diversity, 445-470 
  30. Sterflinger, K. (2000). Fungi as Geologic Agents. Geomicrobiology Journal, 17(2), 97-124. https://doi.org/10.1080/01490450050023891 
  31. Sun, W., Shahrajabian, M., & Lin, M. (2022). Research Progress of Fermented Functional Foods and Protein Factory-Microbial Fermentation Technology. Fermentation, 8(12), 688; https://doi.org/10.3390/fermentation812068800 
  32. Tamang, J. P. (2010). Himalayan fermented foods: Microbiology, nutrition, and ethnic values. CRC Press. 
  33. Tokuyama, K., Shimodaira, Y., Terawaki, T., Kusunose, Y., Nakai, H., Tsuji, Y., Toya, Y., Matsuda, F., & Shimizu, H. (2020). Data science-based modeling of the lysine fermentation process. Journal of Bioscience and Bioengineering, Oct;130(4), 409-415. doi: 10.1016/j.jbiosc.2020.06.011. Epub 2020 Jul 22. 
  34. Valero, D., & Serrano, M. (2012). Fermented foods in health promotion. Trends in Food Science & Technology, 24(1), 8-15. DOI: [10.1016/j.tifs.2011.09.001] 
  35. Wilburn, J., & Ryan, E. (2017). Chapter 1 - Fermented Foods in Health Promotion and Disease Prevention: An Overview. Fermented Foods in Health and Disease Prevention, 3-19. 
  36. Yang, C., Kristiani, E., Leong, Y., & Chang, J. (2023). Big data and machine learning driven bioprocessing - Recent trends and critical analysis. Bioresource Technology, 372, 128625. 
  37. Zhang, K., Zhang, T., Guo, R., Ye, Q., Zhao, H., & Huang, X. (2023). The regulation of key flavor of traditional fermented food by microbial metabolism: A review. Food Chemistry: X, 30 October, 100871.