References
- Admassie, M. (2018). A Review on Food Fermentation and the Biotechnology of Lactic Acid Bacteria. World Journal of Food Science and Technology, 2(1), 19-24.
- Axelsson, L. (2004). Lactic acid bacteria: Classification and physiology. Food Science and Biotechnology, 13(4), 231-239. DOI: [10.1007/s10295-004-0098-2]
- Beech, I. B., & Sunner, J. A. (2004). Biocorrosion: Towards Understanding Interactions Between Biofilms and Metals. Current Opinion in Biotechnology, 15(3), 181-186. https://doi.org/10.1016/j.copbio.2004.05.001
- Blajda, J., Kucab, A., Miazga, A., Maslowski, M., Kopanska, M Nowak, A., & Barnas, E. (2023). Google Trends Analysis Reflecting Internet Users' Interest in Selected Terms of Sexual and Reproductive Health in Ukraine. Healthcare, 11(11), 1541; https://doi.org/10.3390/healthcare11111541
- Choi, H., & Varian, H. (2012). Predicting the Present with Google Trends. Economic Record, 88(s1), 2-9.
- Domzal-Kedzia, M., Lewinska, A., Jaromin, A., Weselski, M., Pluskota, R., & Lukaszewicz, M. (2019). Fermentation parameters and conditions affecting levan production and its potential applications in cosmetics Author links open overlay panel. Bioorganic Chemistry, 93, 102787.
- Fatima, S., & Rahimi, A. (2024). A Review of Time-Series Forecasting Algorithms for Industrial Manufacturing Systems. Machines, 12(6), 380. https://doi.org/10.3390/machines12060380
- Gadd, G. M. (2007). Geomycology: Biogeochemical Transformations of Rocks, Minerals, Metals and Radionuclides by Fungi, Bioweathering and Bioremediation. Mycological Research, 111(1), 3-49. https://doi.org/10.1016/j.mycres.2006.12.001
- Ganzle, M. G. (2015). Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science, 2, 106-117. DOI: [10.1016/j.cofs.2015.03.001]
- Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012-1014.
- Goel, S., Hofman, J. M., Lahaie, S., Pennock, D. M., & Watts, D. J. (2010). Predicting consumer behavior with web search data. Proceedings of the National Academy of Sciences, 107(41), 17486-17490.
- Heller , K. (2001). Probiotic bacteria in fermented foods: product characteristics and starter organisms. Journal of Clinical Nutrition, 73(2 Suppl), 374S-379S. doi: 10.1093/ajcn/73.2.374s..
- Itto-Nakama, K., Watanabe,S., Kondo, N., Ohnuki, S., Kikuchi, R., Nakamura, T., Ogasawara, W., Kasahara, K. & Ohya, Y. (2021). AI-based forecasting of ethanol fermentation using yeast morphological data. Bioscience, Biotechnology, and Biochemistry, 86(1), 125-134. https://doi.org/10.1093/bbb/zbab188
- Janka, D., Lenders, F., Wang, S., Cohen, A., & Li, N. (2019). Detecting and locating patterns in time series using machine learning. Control Engineering Practice, December, 104169.
- Javaherdashti, R. (2008). Microbiologically Influenced Corrosion: An Engineering Insight. Springer, https://doi.org/10.1007/978-1-4020-6800-3
- Lakhal, R., Auria, R., Davidson, S., Ollivier, B., Dolla, A., Hamdi, M., & Combet-Blanc, Y. (2010). Effect of Oxygen and Redox Potential on Glucose Fermentation in Thermotoga maritima under Controlled Physicochemical Conditions. International Journal of Microbiology, 896510. doi: 10.1155/2010/896510
- Leeuwendaal, N., Stanton, C., O'Toole, P., & Beresford1, T. (2022). Fermented Foods, Health and the Gut Microbiome. Nutrients, Apr; 14(7), 1527.
- Lin, Y., & Tanaka, S. (2006). Ethanol fermentation from biomass resources: current state and prospects. Applied Microbiology and Biotechnology, 69, 627-642. DOI 10.1007/s00253-005-0229-x
- Moonga, H., Schoustra, S., Linnemann, A., Heuvel, J., Shindano, J., & Smid, E. (2021). Influence of fermentation temperature on microbial community composition and physicochemical properties of mabisi, a traditionally fermented milk. LWT, 136, January , 110350.
- Olson, G. J., Brierley, J. A., & Brierley, C. L. (2003). Bioleaching Review Part B: Progress in Bioleaching: Applications of Microbial Processes by the Minerals Industries. Applied Microbiology and Biotechnology, 63(3), 249-257. https://doi.org/10.1007/s00253-003-1452-4
- Rault, A., Bouix, M., & Beal1, C. (2009). Fermentation pH Influences the Physiological-State Dynamics of Lactobacillus bulgaricus CFL1 during pH-Controlled Culture. Applied and Environmental Microbiology, Jul; 75(13), 4374-4381.
- Rawlings, D. E., & Johnson, D. B. (2007). The Microbiology of Biomining: Development and Optimization of Mineral-Oxidizing Microbial Consortia. Microbiology, 153(2), 315-324. https://doi.org/10.1099/mic.0.29241-0
- Roell, G., Sathish, A., Wan, N., Cheng, Q., Wen, Z., Tang, Y., & Bao, F. (2022). A comparative evaluation of machine learning algorithms for predicting syngas fermentation outcomes. Biochemical Engineering Journal, 186, August, 108578.
- Rolle, R., & Satin, M. (2002). Basic requirements for the transfer of fermentation technologies to developing countries. International Journal of Food Science and Technology, 37(4), 405-412. DOI: [10.1046/j.1365-2621.2002.00597.x]
- Sadh, P., Kumar, S., Chawla, P., & Duhan, J. (2018). Fermentation: A Boon for Production of Bioactive Compounds by Processing of Food Industries Wastes (By-Products). Molecules. Oct; 23(10), 2560.
- Salar-Garcia, M., Ortiz-Martinez, V. Sanchez-Segado, S., Sanchez, R., Lopez, A., Blanco, L., & Godinez-Seoane, C. (2024). Sustainable Production of Biofuels and Biochemicals via Electro-Fermentation Technology. Molecules, 29(4), 834. https://doi.org/10.3390/molecules29040834
- Sayah, I., Gervasi, C., Achour, S., & Gervasi, T. (2024). Fermentation Techniques and Biotechnological Applications of Modified Bacterial Cellulose: An Up-to-Date Overview. Fermentation, 10(2), 100, https://doi.org/10.3390/fermentation10020100
- Schmidt F. (2005). Optimization and scale up of industrial fermentation processes. Applied Microbiology and Biotechnology, Sep;68(4), 425-35. doi: 10.1007/s00253-005-0003-0. Epub 2005 Oct 26.
- Sharma, I., & Yaiphathoi, S. (2020). Chapter 19 - Role of microbial communities in traditionally fermented foods and beverages in North East India. Recent Advancements in Microbial Diversity, 445-470
- Sterflinger, K. (2000). Fungi as Geologic Agents. Geomicrobiology Journal, 17(2), 97-124. https://doi.org/10.1080/01490450050023891
- Sun, W., Shahrajabian, M., & Lin, M. (2022). Research Progress of Fermented Functional Foods and Protein Factory-Microbial Fermentation Technology. Fermentation, 8(12), 688; https://doi.org/10.3390/fermentation812068800
- Tamang, J. P. (2010). Himalayan fermented foods: Microbiology, nutrition, and ethnic values. CRC Press.
- Tokuyama, K., Shimodaira, Y., Terawaki, T., Kusunose, Y., Nakai, H., Tsuji, Y., Toya, Y., Matsuda, F., & Shimizu, H. (2020). Data science-based modeling of the lysine fermentation process. Journal of Bioscience and Bioengineering, Oct;130(4), 409-415. doi: 10.1016/j.jbiosc.2020.06.011. Epub 2020 Jul 22.
- Valero, D., & Serrano, M. (2012). Fermented foods in health promotion. Trends in Food Science & Technology, 24(1), 8-15. DOI: [10.1016/j.tifs.2011.09.001]
- Wilburn, J., & Ryan, E. (2017). Chapter 1 - Fermented Foods in Health Promotion and Disease Prevention: An Overview. Fermented Foods in Health and Disease Prevention, 3-19.
- Yang, C., Kristiani, E., Leong, Y., & Chang, J. (2023). Big data and machine learning driven bioprocessing - Recent trends and critical analysis. Bioresource Technology, 372, 128625.
- Zhang, K., Zhang, T., Guo, R., Ye, Q., Zhao, H., & Huang, X. (2023). The regulation of key flavor of traditional fermented food by microbial metabolism: A review. Food Chemistry: X, 30 October, 100871.