
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 9, Sep. 2024                                           2626 
Copyright ⓒ 2024 KSII 

http://doi.org/10.3837/tiis.2024.09.009                                                                                                              ISSN : 1976-7277 

 
Low Lumination Image Enhancement with 

Transformer based Curve Learning 
 

Yulin Cao1, Chunyu Li2, Guoqing Zhang2, and Yuhui Zheng1* 
1 Colloge of computer, Qinghai Normal University  

Xining, Qinghai, China  
[e-mail: zhengyh@vip.126.com] 

2 School of Computer and Software, Nanjing University of Information Science and Technology 
Nanjing, China 

[e-mail: 72421@163.com] 
*Corresponding author: Yuhui Zheng 

 
Received December 8, 2023; revised July 4, 2024; accepted August 8, 2024;  

published September 30, 2024 
 

 
Abstract 

 
Images taken in low lamination condition suffer from low contrast and loss of information. 
Low lumination image enhancement algorithms are required to improve the quality and 
broaden the applications of such images. In this study, we proposed a new Low lumination 
image enhancement architecture consisting of a transformer-based curve learning and an 
encoder-decoder-based texture enhancer. Considering the high effectiveness of curve 
matching, we constructed a transformer-based network to estimate the learnable curve for 
pixel mapping. Curve estimation requires global relationships that can be extracted through 
the transformer framework. To further improve the texture detail, we introduced an encoder-
decoder network to extract local features and suppress the noise. Experiments on LOL and 
SID datasets showed that the proposed method not only has competitive performance 
compared to state-of-the-art techniques but also has great efficiency. 
 
 
Keywords: Enhancement, transformer, Low lumination, spatial attention, channel attention, 
convolutional neural network. 
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1. Introduction 

The digital image has become an important carrier of information and plays an essential role 
in our daily lives. However, the quality of images usually suffers from insufficient or uneven 
illumination, resulting in noise and low contrast images. This seriously hinders the application 
of digital images, such as mobile photography, video surveillance, and autopilot. Therefore, 
digital imaging should work in different scenarios including low lumination conditions. In 
order to make better use of the information contained in images, there is an urgent need to 
develop an efficient low lumination image enhancement method. 

 
 

 
Fig. 1. The main framework of the proposed method, which consists of a curve adjustment module and a 

texture extraction module. 
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Over the past decades, a variety of enhancement methods have been introduced. They can 
be roughly divided into four categories: histogram-based methods [1-5], retinex-based 
approaches [6-15], inverted domain-based techniques [16, 17], and data-driven methods [18-
28]. The histogram equalization (HE)-based methods mainly focus on improving the contrast 
by adjusting the statistical distribution of individual pixels. They extend the dynamic range to 
recover detail [4]. Histogram-based approaches are usually time-efficient but tend to over-
enhance the noise in homogeneous regions [1].  Retinex theory states that the image captured 
by the human eyes can be considered as the product of illumination and reflectance. The main 
processes of retinex-based methods include the decomposition of the illumination and the 
reflectance, the adjustment of the decomposed components by specific procedures, and the 
fusion of the adjusted components. The earliest techniques [6, 7] estimated the reflectance of 
the image and considered the reflectance as the enhanced result. They did not take the 
illumination into account, resulting in the probability of over-enhancement. Later research 
estimated the illumination of Low lumination images and the adjusted them. The enhanced 
result was obtained by multiplying the reflectance and the adjusted illumination. The inverted 
domain-based methods are inspired by the observation that the inverted Low lumination 
images share many characteristics with the image taken in hazy conditions. They apply a de-
haze algorithm to the inverted image and then invert the de-hazed image to obtain the improved 
result. The frameworks for these techniques are manually designed and tend to suffer from a 
lack of feature representation, leading to unsatisfactory performance. 

In recent years, deep learning-based approaches have been rapidly developed due to their 
superiority in feature extraction and representation. Specifically, they construct end-to-end 
frameworks to learn the signal features from Low lumination images and map them to the 
target representation in RGB or raw domain [18, 19]. The references of [20, 22, 25, 26, 28] 
combine retinex theory and deep learning, decompose the illumination and reflectance through 
convolutional neural networks, and finally tune them to obtain the improved results. In the 
reference [21], content and structure were learned through two connected streams, and a spatial 
variant was proposed to extract structure features. In the reference [23], a generative 
adversarial network framework was introduced to enhance the Low lumination images in the 
generative model. Li et al. [24] designed a high-order curve to map a Low lumination image 
to a normal-light image. The parameters of the curve were learned using a deep curve 
estimation network. The frameworks of the above methods are almost based on the 
convolutional neural network, which has advantages in modelling the local relationship of 
images but fails to extract the global features.  

In this study, we proposed a novel framework including two subnetworks: a transformer-
based curve adjustment network and a context enhancement and denoising network (Fig. 1). 
Since the contrast enhancement is a global operator but the context enhancement and denoising 
are mostly based on the local features, we solved them in independent sub-networks. The 
structure of the curve adjustment network was based on the vision transformer (VIT) [29] 
because of its excellent ability to establish a global relationship across the entire image. The 
context enhancement and noise reduction network was based on an encoder-decoder 
convolutional neural network which was able to extract local features and suppress noise. 
Furthermore, channel attention and spatial attention modules were introduced to improve 
performance.  

The main contributions of this research can be summarized as follows. 
1) We proposed a novel curve learning network to stretch the contrast and recover the 

information buried in the darkness, which was based on the transformer and was 
generalized well to different images. 
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2) We constructed an encoder-decoder-based texture enhancement network and 
integrated the attention mechanism, which explores the local features of the image and 
avoids amplifying the noise. 

3) We introduced a new strategy for generating the reference curve for training and 
constructing a loss function with a second-order gradient regularization to improve 
the curve adjustment results 

The remainder of this article is organized in the following sections: Section 2 gives a brief 
overview of previous popular investigations on Low lumination image enhancement. In 
section 3, we propose our architecture and give a detailed introduction. Experimental results 
and discussion are presented in Section 4. Finally, conclusions and future work are discussed 
in Section 5 

2. Related Works 

2.1 Hand-Crafted Methods 
Histogram Equalization: Due to its simplicity and efficiency, HE is a widely used 

technology for improving the visibility of Low lumination images. HE-based methods have a 
solid foundation of statistical mathematics. They adjust each pixel to balance the probability 
distribution, thereby increasing the dynamic range and improving contrast. To overcome the 
over-enhancement of the bright region, which weakens the local detail, Adaptive Histogram 
Equalization (AHE) [1] adjusts the histogram in the local block of the image. And an 
interpolation between local blocks is used to maintain the continuity of the overall image. 
Although AHE can greatly improve contrast and structure, it cannot suppress the noise which 
severely destroys much of the information contained in the image. Noise can be reduced by 
Contrast Limited Adaptive Histogram Equalization (CLAHE) [2]. CLAHE applies a limit to 
the enhancement in homogeneous areas and truncates the histogram to avoid the amplification 
of noise. The brightness of the image is usually changed after HE processing, which limits its 
use in areas where the original brightness should be preserved such as TV. To overcome this 
problem, Brightness Preserving Bi-Histogram Equalization (BBHE) [3] has been proposed as 
an extension of HE. BBHE decomposes the image into two sub-images based on their mean 
and applies independent HE to them. This imposes a constraint between the sub-images, 
resulting in the brightness level being bounded around the mean of the input.  

Later, methods were proposed to improve HE performance using contextual information. 
For instance, the Contextual and Variational Contrast Enhancement (CVC) technique [5] 
constructed a 2-D histogram based on the relationship between pixels in the local region and 
imposed a constraint between the input histogram and the uniformly distributed histogram. In 
addition, the Layered Difference Representation (LDR) approach [5] improved the output 
differences using the LDR of a 2-D histogram which was based on the statistical information 
between neighboring pixels.  

However, HE-based methods tend to focus on improving the contrast of the overall image, 
rather than exploiting and enhancing the illumination of the Low lumination image, and 
therefore under the risk of over- or under-enhancement. 

Retinex-based Methods: The Retinex theory [30] suggests that an image that we observe 
can be decomposed into two components: illumination and reflectance, and that the colour of 
an object is determined by reflectance. Based on the Retinex theory, a series of approaches 
have been proposed. Single-Scale Retinex (SSR) [6] assumes that the illumination is smooth, 
and estimates it using a Gaussian filter. Then The illumination is then removed and the 
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reflectance is used as the enhanced result. It is difficult to maintain a balance between colour 
and dynamic range using SSR, and therefore, so Multi-scale Retinex (MSR) [7] was proposed 
to alleviate this problem. MSR applies a Gaussian filter with different scales and calculates 
the average of these filtered outputs. Compared to SSR, MSR can simultaneously achieve 
colour reproduction and dynamic range compression. However, SSR and MSR remove the 
illumination directly from the original image and treat the reflectance as the enhancement 
output, which destroys the naturalness and tends to over-enhance the result. 

Recently, the retinex-based methods mainly decompose the illumination and reflectance 
and enhance them using various techniques, and then treat the fusion version of them as the 
enhanced result. For instance, MF [13] performs decomposition using morphological closure, 
and the enhancement is performed based on sigmoid function and AHE. The adjusted 
illumination is constructed by a multi-scale fusion, and then it is multiplied by the estimated 
reflectance to obtain the final result. Guo et al. [8] estimated the illumination in a variational 
model, which found the maximum pixel value in RGB channels to construct the initial 
illumination map as the reference and introduced a structure-aware weight to smooth the 
illumination. To improve the structure and texture of the enhancement result, STAR [10] used 
exponentiated local derivatives to extract the structure and texture maps and used them to 
control the illumination and reflectance. In the references of [9, 12] and [15], the noise was 
explicitly considered and a noise term was added to the original retinex theory. This helps to 
improve the performance of the enhancement for the Low lumination image, which always 
contains noise that is simultaneously amplified during the brightness enhancement. 

Although retinex-based approaches perform well in terms of illumination enhancement and 
detail detection, they fail to preserve the naturalness which can affect the visual perception.  

Inverted domain-based techniques: Dong et al. [17] observed that the inverted version 
of a Low lumination image has many similar characteristics compared to an image captured 
under hazy conditions. They inverted the Low lumination image and then applied a dehazing 
algorithm to the inverted image, called video dehazing. The improved result was obtained by 
inverting the dehazed image again. In the reference [16], an improved dehazing algorithm was 
proposed to dehaze the inverted image by estimating the transmission based on the luminance 
instead of depth. Inverted domain-based methods are fast and efficient, but they do not produce 
satisfactory visual quality. Furthermore, there is no reasonable explanation for their 
effectiveness. 

2.2 Data-Driven Methods 
With the rapid development of deep learning, various data-driven methods have been 

proposed for low lumination image enhancement. The encoder-decoder architecture is a 
widely adopted framework in various domains. For example, Lore et al. [18] constructed an 
autoencoder (LLNet) that was trained to extract signal features from the Low lumination image 
and to improve the contrast. LLNet focuses on the local patch-wise contrast enhancement 
based on neighbors, and suppresses noise by another denoising autoencoder. Ren et al. [21] 
approached the contrast enhancement through two streams, focusing on context and edge, 
respectively. The context stream consists of an encoder-decoder network, which is designed 
to estimate the global content in the Low lumination image. The edge stream uses the same 
encoder-decoder network but predicts the edge using spatially varying recurrent neural 
networks (RNNs). Unlike the previously mentioned methods, the reference [19] presented an 
end-to-end convolutional neural network (CNN) that directly performs an enhancement using 
the raw sensor data and, discarding the traditional pipeline. 
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Shen et al. [31] found that the MSR is equivalent to an end-to-end CNN consisting of 
multiple Gaussian convolutional kernels. And a convolutional neural network (MSR-net) with 
a similar architecture to the MSR was proposed to map a Low lumination image to a normal-
light image. Then, more and more methods combining CNN and Retinex were proposed. For 
example, Li et al. [28] proposed trainable CNN (LightenNet) to estimate the illumination and 
produce the enhanced image by referring to the Retinex model. Wei et al. [20] constructed a 
three-step framework. In this framework, illumination and reflectance were decomposed using 
a Decom-Net, then enhanced using an encoder-decoder network. Finally, the enhanced result 
was reconstructed based on the retinex model. Deng et al. [22] built a joint decomposition and 
denoising network based on the U-Net architecture[32]. The network was trained under the 
assumption that the reflectance map is similar to the paired normal-light image, which would 
simultaneously suppress the noise in the reflectance. The RetinexDIP [26] describes the 
retinex decomposition as a generative problem. With reference to the Deep Image Prior (DIP) 
[33], RetinexDIP generates the reflectance and illumination from stochastic noise using two 
dividual DIP networks. 

Generative adversarial networks (GANs) perform well in image enhancement and are free 
of paired data. Kim et al. [27] first proposed a GANs-based algorithm for Low lumination 
image enhancement, which was trained with adversarial loss, perceptual loss, and colour loss. 
To avoid over- or under-enhancement in local regions, EnlightenGAN [23] constructed the 
generator network with an attention mechanism that used illumination to construct an attention 
map. Global-local discriminators were also considered to improve the performance with no-
uniform illumination. 

3. Proposed Method 
We proposed a novel architecture based on transformer curve learning and CNN to perform 

Low lumination image enhancement. The framework is divided into two steps: brightness 
adjustment based on transformer curve learning and context enhancement based on encoder-
decoder CNN. The transformer can establish the non-local relationship that contributes to the 
curve adjustment on the whole image. And the context enhancement module is introduced to 
extract the local detail and suppress the noise. Fig. 1 illustrates the structure of our proposed 
methods. 

3.1 Curve Adjustment with Transformer 
The curve adjustment in image processing software shows great performance in Low 

lumination image enhancement with hand-craft settings. The curve represents the mapping of 
pixel values between the Low lumination and normal-light images. However, it is limited in 
practical applications because the settings are only appropriate for the specific image. To 
overcome this problem, we tried to learn a curve using deep neural networks. 

Compared to the gamma correction, curve adjustment is a more universal algorithm for 
improving image brightness because the shape of the curve is more flexible and the mapping 
can fit images with different dynamic ranges (Fig. 2(a)). The curve is a function that maps one 
pixel to another. Taking the 8-bit image as an example, the domain of the function can be 
represented as {𝑥𝑥| 0 ≤ 𝑥𝑥 ≤ 255} and the range as {𝑦𝑦| 0 ≤ 𝑦𝑦 ≤ 255}. For the pixel values 
which were integer and independent, we formulated a discrete function to represent the 
mapping and to impose smooth constraints. 

As we know, the curve transformation is a global operation, which is based on the non-
local relationship between pixels. The CNN, which has been widely used in image 
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enhancement, focuses mainly on the extraction of local features but fails to establish the global 
relationship. Knowing that vision transformer (ViT) [29] has achieved great success in various 
computer vision tasks, which can extract the global features, we constructed a transform 
framework to estimate the mapping. 

A transformer is a novel structure based on self-attention, which is originally proposed for 
natural language processing (NLP) [34]. Dosovitskiy et al. [29] first introduced a transformer 
to computer vision. In ViT, images are divided into patches and are flattened as vectors. Multi-
head self-attention modules and multi-layer perceptron (MLP) are employed to extract features 
after adding the learning classification token. 

Inspired by the ViT framework, we constructed the learnable pixel token to replace the 
classification token and designed a curve prediction head to generate the map of pixels, 
representing the corresponding values in the adjusted result. The map was represented using 
the following format: 

 𝑀𝑀 = [𝑝𝑝0,  𝑝𝑝1, , … ,𝑝𝑝256] (1) 
The elements 𝑝𝑝0,  𝑝𝑝1, , … ,𝑝𝑝256  denote the corresponding values of the original values 

[1, 2, … , 256]  in the adjusted result. The transformer-based curve learning framework is 
illustrated in Fig. 1. The Low lumination image is divided into 2D patches using a 
convolutional kernel of size 16 and then is flattened as one-dimensional tensors. After stacking 
with a pixel token, a transformer encoder is constructed to extract features from the input 
patches which contain several transformer blocks. The blocks consist of multi-head self-
attention modules [29] and linear layers that are followed by activation and layer normalization. 

To train the network that could be applied to different images, we constructed the ground 
truth using the paired low lumination and normal-light data. As a reference, we took the 
dominant value in all the pixels in the normal light image that corresponded to the specific 
pixel value in the low lumination image. Fig. 2(d) illustrates an example of reference 
calculated between Fig. 2(a) and (b), where the shape is similar to the ground truth curve in 
Fig. 2(c). This is a clear demonstration of the validity of this reference construction algorithm. 

 
Fig. 2. An example of curve adjustment: (a) Low lumination image; (b) the output of curve 

adjustment; (c) the curve used to enhance the low-light image; (d) the calculated reference curve. 
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In the test stage, the Low lumination image is fed into our transformer-based curve 
estimation framework, and we will get the map of pixels. The improved results are obtained 
by discrete curve adjustment. 

The advantage of using transformers lies in their self-attention mechanism, allowing the 
network to process long-range dependencies and establish global contexts on images, unlike 
traditional convolutional neural networks that are more adept at capturing local features. 

3.2 Context Enhancement and Denoising 
The global curve adjustment introduced above significantly improved the contrast of the 

Low lumination image and revealed the objects buried in the dark areas. However, at the same 
time, the noise was amplified simultaneously and the global curve adjustment was unable to 
capture the local detail. We addressed the challenges associated with enhancing low luminance 
images by employing an encoder-decoder network to enhance texture details and suppress 
noise, along with channel and spatial attention modules to further improve performance. 

Due to the great performance of encoder-decoder networks in image denoising [35-37], 
deraining [38], dehazing [39], and inpainting [40], we constructed our context enhancement 
and denoising network based on the encoder-decoder architecture. The context extractor 
consists mainly of convolutional layers, batch norm layers, pooling layers, and transpose 
convolutional layers. The encoder acts as a feature actor that learns feature maps in local 
regions through several convolutional layers. Pooling layers are used to down-sample the 
features and increase the receptive field. The bottleneck block, consisting of three 
convolutional layers, performs a non-linear map on the extracted features. The decoder 
network fuses the features and reconstructs the output, and learnable transpose convolutional 
layers are introduced to up-sample the features. 

Unlike high-level tasks such as classification, object tracking, and segmentation which rely 
on high-level features, image restoration requires low-level features which are typically 
generated from the shallow layers in networks. To take advantage of the low-level features, 
we introduced skip connections between the blocks of our encoder-decoder structure. Fig. 1 
exhibits that skip connections are added at the end of each block of the encoder so that features 
of different levels can be transferred to corresponding blocks of the decoder. In addition, the 
introduction of skip connections is helpful for network convergence. 

With the skip connections, the low-level features are stacked with the corresponding high-
level features, but some features may be redundant. In order to make the best of the stacked 
features, we introduced a channel attention module that can assign weights to different 
channels of the features. The channel attention module takes an adaptive average pooling layer 
as the first layer to enlarge the receptive field, then linear layers and activation layers are used 
to compute the weights. The channel attention mechanism causes our network to pay more 
attention to the features with more importance. Before the last block of our decoder, which 
produces the improved results, a spatial attention module is added. The spatial attention 
module consists of a convolutional layer and a sigmoid layer. It is a pixel-wise weighting 
approach that overcomes the limitation that the curve adjustment using a single curve cannot 
adequately enhance different regions of the image. 

3.3 Loss Function 
Since the Contexture extractor took the curve-adjusted image as the input, we had to train 

our network in two steps. First, the transformer-based curve learning network was trained first, 
then a brightness enhancement was performed on the original Low lumination input after 
which the contexture extractor could be trained. We defined loss functions for the two-
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component networks. 
Curve adjustment Loss: The output of our curve adjustment module is a vector of 256 

elements. To measure the difference between the estimated curve and the reference curve, we 
used the mean absolute error (MAE), which is insensitive to outliers and the gradient was more 
stable. The MAE loss can be written as follows: 

 ℒMAE = 1
𝑛𝑛
∑ �𝑀𝑀𝑖𝑖 − 𝑀𝑀𝑖𝑖

𝑟𝑟𝑟𝑟𝑟𝑟�𝑛𝑛
𝑖𝑖=1 , (2) 

where 𝑀𝑀𝑖𝑖 and 𝑀𝑀𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟 represent the 𝑖𝑖-th elements of the predicted curve and reference curve. 

To improve the naturalness of the enhanced image, we proposed an element-wise weighted 
Laplace regularization term to smooth the estimated curve. It is defined as follows: 
 ℒSmooth = 𝑊𝑊 ∙ (𝑀𝑀𝑖𝑖−1 +𝑀𝑀𝑖𝑖+1 − 2𝑀𝑀𝑖𝑖), (3) 
 𝑊𝑊 = (𝑀𝑀𝑖𝑖/255)𝛾𝛾. (4) 
𝑀𝑀𝑖𝑖−1 and 𝑀𝑀𝑖𝑖+1 indicate the previous and next element of the current element (𝑀𝑀𝑖𝑖) in the curve 
vector, and 𝑊𝑊 stands for the element-wise weights. The Laplacian operator is a second-order 
operator. When it is used as a regularization, it imposes a constraint on the rate of change of 
the slope of the estimated curve rather than the slope itself. This can synchronously smooth 
the curve and preserve its ability to stretch the contrast, especially when 𝛾𝛾 <  1.  

By combining the MAE loss and smooth loss, the final curve adjustment loss is defined as: 
 ℒcurve = ℒMAE + 𝜆𝜆𝑠𝑠 ∙ ℒsmooth, (5) 

where 𝜆𝜆𝑠𝑠 is the balance weight between ℒMAE and ℒsmooth. 
Context Enhancing and Denoising Loss: The Contexture extractor was proposed to 

improve the context and to suppress the noise. We minimized the MAE loss to train the 
network to extract details from the input image. Furthermore, a total variant (TV) 
regularization was imposed on the output for denoising. The loss function can be written as: 
 ℒCED = �𝐼𝐼 − 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟�1 + 𝜆𝜆𝑡𝑡 ∙ 𝑇𝑇𝑇𝑇(𝐼𝐼), (6) 

𝐼𝐼 and 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 represent the estimated result and ground truth image of our Contexture extractor. 
𝑇𝑇𝑇𝑇(∙) is a total variant regularization term and 𝜆𝜆𝑡𝑡 is the balance weight. 

4. Experiment 
In this stage of our study, we set up experiments and compared the proposed method with 

state-of-the-art techniques from different aspects. Furthermore, the parameters and effects of 
different parts of the proposed framework were analyzed. 

4.1 Experiment Setup 
The experiments were implemented using PyTorch and were conducted on a PC with an 

Intel Core i9-1080XE CPU, an RTX 3090 GPU, and 192 GB of memory. The trade-off 
parameters of 𝜆𝜆𝑠𝑠  and 𝜆𝜆𝑡𝑡  in loss functions were set to 0.001 and 0.0005, respectively. The 
maximum iterations of the transformer-based curve adjustment module and texture extraction 
module were set to 20 and 50, respectively. To evaluate the performance of the proposed 
method, we conducted experiments on datasets including LOL [20] and SID [19]. LOL dataset 
provides 500 paired low/normal-light images taken from real scenes for Low lumination 
enhancement [20]. SID is another dataset that provides image pairs, but its raw images require 
preprocessing to obtain the RGB images. 
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Our framework consists of the curve adjustment module and the texture extraction module. 
In the first phase, the curve adjustment module was trained. Since we trained the curve 
adjustment module in supervised mode, the reference curve vector was required which was 
introduced in section 3.A. The curve adjustment module takes the Low lumination image as 
the input and flattens the image patches into 1D sequences. After being embedded in the 
learnable curve token, the sequences are input to the transformer encoder to extract features. 
The output curve can be obtained via the MLP decoder. After performing a curve adjustment 

 
Fig. 3. The visual comparison of results produced by different methods using an image from LOL dataset. 

 
 

Table 1. Quantitative Results of different Methods On LOL Dataset 

 HE CLAHE DeHaze LIME MF STAR Zero-DCE RetinexNet RetinexDIP Proposed 

PSNR 13.4129 12.3891 16.978 16.9115 16.9075 18.8411 16.8718 8.8826 16.507 25.1311 

SSIM 0.47884 0.4219 0.56641 0.69663 0.69666 0.76828 0.73847 0.50373 0.73616 0.82069 

NIQE 5.6898 4.0885 4.7458 4.8034 4.7958 3.8571 4.6816 3.738 4.4082 3.3481 

 
Table 2. Quantitative Results of different Methods On SID Dataset 

 HE CLAHE DeHaze LIME MF STAR Zero-DCE RetinexNet RetinexDIP Proposed 

PSNR 13.2097 10.0781 16.2768 17.1818 16.9662 11.206 14.8607 16.774 9.96 19.8184 

SSIM 0.3249 0.3104 0.5295 0.6349 0.6049 0.4625 0.5849 0.5594 0.3263 0.7526 

NIQE 10.1137 8.36 8.9128 3.9584 9.7125 8.233 8.2232 9.7296 6.8967 3.0527 
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on the input low lumination image using the obtained curve, we obtain the result of the 
contrast-enhanced version. In the second stage, we used the texture extraction module to 
improve the context information and to denoise. It takes the contrast result as input and the 
paired normal-light image as ground truth. The encoder-decoder structure learns the feature 
maps and reconstructs the final enhanced result. The curve adjustment module and texture 
extraction module share the enhancement tasks and work together to produce a satisfactory 
enhanced result. 

4.2 Comparison with other methods 
We compared the performance of our method with representative or state-of-the-art 

methods from different categories including HE-based approaches: HE, CLAHE [2], and 
DeHaze [17]; Retinex-based methods: LIME [8], MF [13], and STAR [10]; Learning-based 
methods: RetinexNet [20], RetinexDIP [26], and Zero-DCE [41]. We used their official codes 
and the default parameters provided, and the tests were performed in the same environment.  

Qualitative assessments: Fig. 3 shows that visual comparisons were made with other 
methods on the LOL dataset. From Fig. 3, we can see that these methods successfully recover 
information buried in dark except for the HE-based methods. However, the results of Dehaze 
and RetinexDIP are still somewhat weak, while the results of STAR and RetinexNet are over-
enhanced. There is a lot of noise in the results of STAR, RetinexNet, and MF. For the LIME, 
the result seems unreal due to the over-denoising. The result of the proposed method not only 
improves the brightness, but also detects the texture well without amplifying the noise. 

Fig. 4 shows the comparison of an outdoor scene from the SID dataset. It indicates that 
STAR and RetinexNet failed to process the sky region and that the brightness is still low for 
RetinexDIP. The results of the presented model achieved a high agreement with the reference. 
The visual comparisons demonstrated the effectiveness of the proposed method. 

Quantitative assessments: We took three popular assessment criteria to quantitatively 
compare the performance of the presented method with state-of-the-art approaches, including 
the peak signal-to-noise ratio (PSNR), the structural similarity (SSIM) [42], and the Natural 
Image Quality Evaluator (NIQE) [43]. PNSR is one of the most widely used quality metrics, 
which is based on the mean squared error. SSIM measures the structural similarity between 
the input and reference images, while NIQE is a non-reference metric that focus on the 
naturalness. 

The quantitative comparison of the different methods on 15 test images from the LOL 
dataset is shown in Table 1. The best results are marked in bold. The result of PSNR indicates 
that the aforementioned methods are effective in information detection and enhancement. The 
retinex-based methods and the data-driven techniques achieved better performance than the 
HE-based approaches, and the proposed method achieved the best result. The basic idea of 
HE-based methods is to improve the contrast of images, but it fails to preserve the structure 
and details, resulting in poor performance in SSIM and NIQE. The retinex-based methods 
perform well in terms of SSIM, assuming that the illumination is smooth and the reflectance 
contains the structure information. The data-driven methods gave better performance in NIQE. 
By introducing our texture extraction module, which explores the local details and suppresses 
the noise, the proposed method had superiority in SSIM and NIQE. 

The quantitative results of the SID dataset are shown in Table 2, demonstrating the high 
performance of the proposed method. The LOL dataset contains more outdoor scenes and 
while the SID dataset contains more indoor scenes. The results convincingly prove the 
universality of the proposed model. 
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4.3 Ablation Experiments 
To evaluate the effectiveness of each module, we conducted ablation experiments on the 

LOL dataset. Three settings were used for comparison including: i. curve adjusting with 
transformer only; ii. curve adjusting with encoder-decoder enhancer; iii. curve adjusting and 
encoder-decoder enhancer with attention module. The quantitative results of the average of 15 
testing images are shown in Table 3. It can been seen that the curve adjusting itself (setting i) 
can produce good results, but the naturalness is poor. When the encoder-decoder enhancer is 
adopted (the setting ii), the three metrics improve significantly, especially the NIQE. This 

 
Fig. 4. The visual comparison of results produced by different methods using an image from SID dataset. 

 
 

Table 3. The Results of Ablation Experiments 

 Curve Encoder-decoder Attention PSNR SSIM NIQE 

   18.4327 0.6437 8.1877 
   19.4723 0.7397 3.2827 
   19.8184 0.7526 3.0527 

 
 

Table 4. Comparison of Computing Time of different Methods 

 HE CLAHE DeHaze LIME MF STAR Zero-DCE RetinexNet RetinexDIP Proposed 

Time 
(S) 0.0215 0.0211 0.0394 0.3845 0.1225 3.7197 0.0475 0.2387 32.5141 0.3374 
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demonstrates the importance of the encoder-decoder enhancer in texture improvement. Table 
3 shows that the whole architecture (setting iii) achieves a further improvement in these 
metrics, proving the effectiveness of introducing attention modules. The ablation experiments 
suggest that each part of the proposed model is essential for competitive performance. 

4.4 Computational Complexity 
The comparison of computation time with other methods is shown in Table 4. The 

resolution of the test images was 600 × 400  And the results showed that the HE-based 
methods were the most efficient methods. The retinex-based techniques were the next and the 
data-driven approaches were the least. Zero-DCE took little time for its simple curve mapping. 
STAR and RetinexDIP took more time due to the resolution processes during the test phases. 
The proposed model and retinex-based LIME took a similar amount of time. In our framework, 
the most time was consumed in the curve adjustment before the texture extractor, and the curve 
learning and texture enhancer had high efficiency. In summary, the proposed method is 
efficient and practical for relevant applications. 

5. Conclusion 
In this study, a novel low lumination image enhancement method was proposed that 

incorporates a transformer-based curve adjustment network and an encoder-decoder texture 
enhancement network with channel and spatial attention mechanisms. The method 
decomposed the problem into contrast enhancement and texture exploration. For contrast 
enhancement, the transformer-based curve learning network was introduced, which extracted 
features globally and produced the adjusting curve automatically. For texture enhancement, an 
encoder-decoder network was proposed, which explored the local information and suppressed 
the noise. Besides, Laplacian and TV regularization terms were introduced into the loss 
function for the naturalness enhancement and denoising. We have evaluated the effectiveness 
of our approach on the LOL and SID datasets, demonstrating its competitive performance and 
efficiency through comparisons with state-of-the-art techniques. 
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