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ABSTRACT

Importance: Antimicrobial resistance (AMR) is a serious public health threat. AMR bacteria 
and their resistance determinants in food can be transmitted to humans through the food 
chain and by direct contact and disseminate directly to the environment.
Objective: This study examined the AMR characteristics and transferable R plasmids in 
Escherichia coli isolated from meat ducks raised in an open-house system.
Methods: One hundred seventy-seven (n = 177) commensal E. coli were examined for 
their antimicrobial susceptibilities and horizontal resistance transfer. The plasmids were 
examined by PCR-based plasmid replicon typing (PBRT) and plasmid multi-locus sequence 
typing (pMLST).
Results: The highest resistance rate was found against ampicillin (AMP, 83.0%) and 
tetracycline (TET, 81.9%), and most isolates exhibited multidrug resistance (MDR) 
(86.4%). The R plasmids were conjugally transferred when TET (n = 4), AMP (n = 3), and 
chloramphenicol (n = 3) were used as a selective pressure. The three isolates transferred 
resistance genes either in AMP or TET. The blaCTX-M1 gene resided on conjugative plasmids. 
Five replicon types were identified, of which Inc FrepB was most common in the donors (n = 
13, 38.4%) and transconjugants (n = 16, 31.2%). Subtyping F plasmids revealed five distinct 
replicons combinations, including F47:A-:B- (n = 2), F29:A-:B23 (n = 1), F29:A-:B- (n = 1), 
F18:A-B:- (n = 1), and F4:A-:B- (n = 1). The chloramphenicol resistance was significantly 
correlated with the other AMR phenotypes (p < 0.05).
Conclusions and Relevance: The meat ducks harbored MDR E. coli and played an important 
role in the environmental dissemination of AMR bacteria and its determinants. This confirms 
AMR as a health issue, highlighting the need for routine AMR monitoring and surveillance of 
meat ducks.
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INTRODUCTION

Antimicrobial resistance (AMR) is a serious public health threat with a greater burden in low- 
and middle-income countries [1]. The overuse and misuse of antimicrobial agents in food 
animal production are considered important contributors to the development of AMR [2]. In 
addition, antibiotics belonging to the same classes are administered to humans, animals, and 
plants. These place AMR as a One Health problematic issue [3] requiring complex-unified 
inter-sectoral collaboration.

Duck rearing is an integral part of the poultry industry in many Asian countries (e.g., Malaysia, 
Vietnam, China, Bangladesh, Indonesia and Thailand) [4]. Duck meat is considered delicious 
and rich in amino acids and polyunsaturated fatty acids but low in fat. It is also considered 
an excellent source of protein for human consumption. Hence, it is gaining popularity and 
gradually displacing chicken meat [5]. Meat duck production in Thailand has increased 
dramatically, and the country has been placed among the top 10 countries in the world for 
duck meat production over the last decade, with an annual production of 7,000,000 meat 
ducks [6]. Traditional and modern integrated systems are used to raise ducks, and rearing 
ducks in an open-house system is common in the country [7]. This duck-raising practice 
has raised public health concerns because of insufficient biosecurity measures in animal 
care and farm management. The concern is exaggerated by the significantly increased use 
of antimicrobials in the duck industry in recent years in the areas with the intensification of 
duck production, including Southeast Asia [8], where the regulation of antimicrobial use in 
animals has been poorly enforced in most countries. In Thailand, the use of antibiotics in 
livestock is regulated by the Department of Livestock Development. The country has drafted 
and enacted laws and regulations containing AMR associated with food animals, but none 
have been specific to poultry. For example, the Notification of the Ministry of Agriculture 
and Cooperatives that specifically prohibits the use of all antibiotics in animal feed as growth 
promoters was released in 2015 [9]. The law on “Characteristics and conditions of animal feed 
containing drugs prohibited from producing, importing, selling and using” launched in 2018 
addressed medicated feed containing polymyxin B, cephalosporins, and fluoroquinolones 
[10]. One year later, the regulation of antimicrobial drugs that must not be mixed in animal 
feed for prophylactic purposes was announced [11]. Although healthy food animals (including 
meat ducks) are expected to be slaughtered for human consumption, meat ducks that look 
healthy could be implicated as carriers of AMR bacteria and determinants that endanger the 
health of humans, animals and environment in the long run [5].

AMR monitoring and surveillance in bacteria from food animals for public health purposes 
includes commensal Escherichia coli as a Gram-negative representative indicator [12]. This 
bacterial species serves as a reservoir for AMR determinants that can be transmitted to other 
bacterial pathogens [13], as demonstrated in previous studies conducted in Laos [14] and 
Nigeria [15]. Commensal E. coli possesses a variety of conjugative R plasmids carrying various 
AMR genes and play a role in the evolution and spread of AMR. Recognizing the significant 
role of plasmids in the AMR distribution, plasmid-based tracking has been recommended for 
inclusion in AMR surveillance programs [16].

Plasmid incompatibility (Inc) group testing is a classical method for identifying and classifying 
plasmids [17]. Plasmids from the same Inc group can neither coexist in the same bacterial 
cells nor be transmitted between them because they share the same replication control or 
partitioning mechanisms. The existence of bacterial strains containing plasmids from the same 
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Inc group in those from various origins suggests the horizontal transmission of such plasmids 
with close phylogenetic relationships [18]. For example, members of the Enterobacteriaceae 
family (e.g., E. coli, Klebsiella pneumoniae, and Salmonella enterica) frequently contain IncF plasmids 
[19]. IncX plasmids have been identified in Salmonella [20] and E. coli [21] but are also present 
in Pseudomonas spp., Acinetobacter spp., and Aeromonas spp. The relationship between particular 
Inc groups and bacterial species may be due to the capacity of plasmids for stable replication 
in particular bacterial hosts [22]. Knowledge and understanding of the plasmid variety and 
transmission will be beneficial in developing a strategic action plan to reduce AMR [13].

AMR studies have been conducted extensively in livestock, especially pigs and broilers. 
Previous studies reported the AMR extent, distribution, and genetic characteristics, 
including plasmid replicons in livestock, meat, and humans [23]. IncF was the predominant 
replicon type in E. coli isolated from pigs, pork, and humans [22]. Nevertheless, knowledge 
is still limited in bacteria of a duck origin. This study examined the AMR characteristics (i.e., 
antimicrobial susceptibilities and R-plasmid transferability) and transferable plasmids in E. 
coli from meat ducks in Thailand.

METHODS

Sample collection and bacterial isolation
One hundred and seventy-seven commensal E. coli isolates were obtained from the bacterial 
stock of the Microbiology Laboratory, Faculty of Veterinary Medicine, Kasetsart University, 
Nakhon Pathom. They were isolated from cloacal swabs collected in 2018 and 2019 from 
three duck farms in Nakhon Pathom province, which has the highest population of meat 
ducks in Thailand. One farm has around 2,000 ducks, which were fed commercial feed. 
Approximately 4,000 ducks were in two other farms where the ducks were fed a home-mixed 
feed formulation. Water for all farms was from an underground source.

Each farm raised ducks using a conventional open-house system and had only one flock. 
During the rearing period, amoxicillin was the most common antibiotic used to treat sick 
birds by adding it to the drinking water. The cloacal swabs were collected individually from 
ducks aged 60–70 days before being sent to the slaughterhouses. E. coli was isolated by the 
direct inoculation method [24,25]. Briefly, the cloacal swab samples were directly inoculated 
on MacConkey agar (Difco; BD, USA). Typical colonies were streaked on Eosin Methylene 
Blue (EMB) agar (Difco; BD). The E. coli isolates were confirmed biochemically using the 
indole production test. One isolate was kept from each positive sample as 20% glycerol stock 
at −80°C. Upon arrival at the authors’ laboratory, all E. coli were reconfirmed by growing on 
EMB and MacConkey agar (Difco; BD).

Antimicrobial susceptibility testing and detection of extended-spectrum 
β-lactamase (ESBL) production
All E. coli isolates (n = 177) were examined for their susceptibilities to 15 antimicrobial 
agents using the broth microdilution method on a Sensititre Automatic Machine (Thermo 
Scientific, USA). The regionally customized Asia surveillance plates, ASSECAF and ASSECB, 
were used (TREK Diagnostic Systems, UK). The antimicrobial agents included the following 
(abbreviations and clinical breakpoints in parentheses): ampicillin (AMP, 32 µg/mL), 
azithromycin (AZI, 32 µg/mL), cefotaxime (FOT, 4 µg/mL), ceftazidime (TAZ, 16 µg/mL), 
chloramphenicol (CHL, 32 µg/mL), ciprofloxacin (CIP, 4 µg/mL), colistin (COL, 4 µg/mL), 
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gentamicin (GEN, 16 µg/mL), meropenem (MERO, 4 µg/mL), nalidixic acid (NAL, 32 µg/mL), 
streptomycin (STR, 16 µg/mL), tetracycline (TET, 16 µg/mL), tigecycline (TGC, 1 µg/mL), 
trimethoprim (TMP, 16 µg/mL), and sulfamethoxazole (SMX, 512 µg/mL) [26]. The reference 
strains E. coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Staphylococcus aureus ATCC 
29213 were used as the quality-control strains. Multidrug resistance (MDR) is defined as a 
strain resistant to at least three antimicrobials in different classes.

The initial AST, E. coli isolates (n = 10) resistant to FOT and TAZ were then analyzed to 
confirm ESBL production using the Sensititre EUVSEC2 plate. ESBL production was 
confirmed based on the minimum inhibitory concentration (MIC) results for FOT, TAZ, FOT/
clavulanate, and TAZ/clavulanate [26]. An ESBL-producer was defined as an isolate showing 
an at least a two to three-fold decrease in concentration in an MIC for either FOT or TAZ 
tested in combination with clavulanic acid versus its MIC when tested alone.

Conjugation experiment
The horizontal transfer of R plasmids was examined using the biparental mating technique 
[23]. The MDR E. coli isolates (n = 148) served as donors using AMP/TET (n = 77), AMP/
TET/COL (n = 15), AMP/TET/CHL (n = 10), AMP/COL/CHL (n = 1), AMP/TET/CHL/COL (n 
= 32), AMP (n = 6), TET (n = 6), and COL (n = 1) as selective pressure. Only one antibiotic 
was used as a selective pressure in each plate. The rifampicin-resistant Salmonella Enteritidis 
(SE12) strains (SE12rifr, MIC= 256 µg/mL) were used as recipients [23]. Briefly, the donor 
and recipient overnight cultures were diluted by mixing 80 µL of the culture with 4 mL 
of fresh Luria Bertani broth (Difco; BD). In a microcentrifuge, the mating of donor and 
recipient cultures were mated in a 1:1 ratio. The bacterial cells were collected, placed onto 
0.45 µm pore size filters on LB agar plates (Millipore; Merck, Germany), and incubated at 
37°C overnight. The conjugation mixture was collected and washed in a 0.9% NaCl solution. 
The transconjugants were selected on LB agar plates with rifampicin (32 µg/mL) and an 
appropriate antibiotic, i.e., AMP (150 µg/mL), TET (15 µg/mL), CHL (25 µg/mL), and COL 
(2 µg/mL), and distributed. The transconjugants were confirmed to be Salmonella on Xylose 
Lysine Deoxycholate agar (Difco; BD). The conjugation rate was quantified by the ratio of the 
number of transconjugants to the number of donors.

PCR amplification and DNA sequencing
The DNA template from the donor and transconjugants was prepared by whole-cell boiling 
lysis [27]. Table 1 lists all primers used in this study. The PCR reactions were performed using a 
TopTaq PCR Master Mix Kit (QIAGEN, Germany) according to the manufacturer’s instructions. 
The PCR amplicons were purified using Nucleospin Gel and PCR cleanup (Macherey-Nagel, 
Germany) and submitted to BIONICS Laboratories (Korea) for nucleotide sequencing.

Detection of β-lactamase genes
The presence of β-lactamase genes, including blaTEM, blaCTX-M, and blaSHV, was detected by 
PCR and confirmed by nucleotide sequencing in the ESBL-producing donor isolates (n = 2) 
and corresponding transconjugants (n = 4) [28]. The blaCTX-M-positive isolates were further 
determined for the specific CTX-M subgroups (i.e., groups 1, 2, and 9) using multiplex-PCR [29].

PCR-based plasmid replicon typing (PBRT) and plasmid multi-locus sequence 
typing (pMLST)
The E. coli donors (n = 13) that conjugally transferred plasmids when using AMP (n = 3), TET 
(n = 4), CHL (n = 3), and AMP/TET (n = 3) as a selective pressure. One of their corresponding 
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Table 1. Primers used in this study
Target Primer Sequence (5′−3′) Amplicon size (bp) Reference
PBRT

IncHI1 HI1-F GGAGCGATGGATTACTTCAGTAC 471 [30]
HI1-R TGCCGTTTCACCTCGTGAGTA

IncHI2 HI2-F TTTCTCCTGAGTCACCTGTTAACAC 644 [30]
HI2-R GGCTCACTACCGTTGTCATCCT

IncI1 I1-F CGAAAGCCGGACGGCAGAA 139 [30]
I1-R TCGTCGTTCCGCCAAGTTCGT

IncX X-F AACCTTAGAGGCTATTTAAG TTGCTGAT 376 [30]
X-R TGAGAGTCAATTTTTATCTCATGTTTTAGC

IncL/M L/M-F GGATGAAAACTATCAGCATCTGAAG 785 [30]
L/M-R CTGCAGGGGCGATTCTTTAGG

IncN N-F GTCTAACGAGCTTACCGAAG 559 [30]
N-R GTTTCAACTCTGCCAAGTTC

IncFIA FIA-F CCATGCTGGTTCTAGAGAAGGTG 462 [30]
FIA-R GTATATCCTTACTGGCTTCCGCAG

IncFIB FIB-F GGAGTTCTGACACACGATTTTCTG 702 [30]
FIB-R CTCCCGTCGCTTCAGGGCATT

IncW W-F CCTAAGAACAACAAAGCCCCCG 242 [30]
W-R GGTGCGCGGCATAGAACCGT

IncY Y-F AATTCAAACAACACTGTGCAGCCTG 765 [30]
Y-R GCGAGAATGGACGATTACAAAACTTT

IncP P-F CTATGGCCCTGCAAACGCGCCAGAAA 634 [30]
P-R TCACGCGCCAGGGCGCAGCC

IncFIC FIC-F GTGAACTGGCAGATGAGGAAGG 262 [30]
FIC-R TTCTCCTCGTCGCCAAACTAGAT

IncA/C A/C-F GAGAACCAAAGACAAAGACCTGGA 465 [30]
A/C-R ACGACAAACCTGAATTGCCTCCTT

IncT T-F TTGGCCTGTTTGTGCCTAAACCAT 750 [30]
T-R CGTTGATTACACTTAGCTTTGGAC

IncFIIA FIIs-F CTGTCGTAAGCTGATGGC 270 [30]
FIIs-R CTCTGCCACAAACTTCAGC

IncF F-F TGATCGTTTAAGGAATTTTG 270 [30]
F-R GAAGATCAGTCACACCATCC

IncK K-F GCGGTCCGGAAAGCCAGAAAAC 160 [30]
K-R TCTTTCACGAGCCCGCCAAA

IncB/O B/O-F GCGGTCCGGAAAGCCAGAAAAC 159 [30]
B/O-R TCTGCGTTCCGCCAAGTTCGA

IncF-RST
FII FII-F CTGATCGTTTAAGGAATTTT 258–262 [32]

FII-R CACACCATCCTGCACTTA
FIIs FIIS-F CTAAAGAATTTTGATGGCTGGC 259–260 [32]

FIIS-R CAGTCACTTCTGCCTGCAC
FIA FIA-F CCATGCTGGTTCTAGAGAAGGTG 462 [32]

FIA-R GTATATCCTTACTGGCTTCCGCAG
FIB FIBs-F TGCTTTTATTCTTAAACTATCCAC 683 [32]

FIB-R CTCCCGTCGCTTCAGGGCATT
ESBLs

blaTEM blaTEM-F GCGGAACCCCTATTT 964 [28]
blaTEM-R TCTAAAGTATATATGAGTA AACTTGGTCT

blaSHV blaSHV-F TTCGCCTGTGTATTATCTCCCTG 854 [28]
blaSHV-R TTAGCGTTGCCAGTGYTG

blaCTX-M blaCTX-M-F CGATGTGCAGTACCAGTAA 585 [47]
blaCTX-M-R AGTGACCAGAATCAGCGG

CTX-M Gr. 1 Mul-CTXMG1-F TTAGGAARTGTGCCGCTGYA 688 [29]
Mul-CTXMG1-R CGATATCGTTGGTGGTRCCAT

CTX-M Gr. 2 Mul-CTXMG2-F CGTTAACGGCACGATGAC 404 [29]
Mul-CTXMG2-R CGATATCGTTGGTGGTRCCAT

CTX-M Gr. 9 Mul-CTXMG9-F TCAAGCCTGCCGATCTGGT 561 [29]
Mul-CTXMG9-R TGATTCTCGCCGCTGAAG

PBRT, PCR-based plasmid replicon typing; RST, replicon sequence typing; ESBL, extended-spectrum β-lactamase.



transconjugants (n = 16) was selected for PBRT. Screening of 18 Inc groups of plasmids was 
conducted using five multiplex PCRs (i.e., HI1/HI2/I1-Iγ, X/L-M/N, FIA/FIB/W, Y/P/FIC, and 
A-C/T/FIIs) and three simplex PCRs (i.e., F, K, and B/O) [30].

Based on the PBRT results, six E. coli donors (i.e., A144, A183, C248, C249, C250, and 
C253) that possess IncF replicons were selected for further subtyping according to the 
pMLST scheme [31]. The FIA, FIB, and FIC were PCR amplified, purified, and submitted 
for nucleotide sequencing [32]. The Fasta files of individual allele-specific sequences were 
uploaded to identify the allele number and sequence type (ST) assignment using the pMLST 
database (https://www.pubmlst.org/plasmid/).

Statistical analysis
Descriptive statistics were used to examine the percentage of AMR using Microsoft Excel. 
The associations of AMP and TET resistance with other antibiotics were determined using a 
χ2 test and calculating the odds ratio (OR) by SPSS program version 22.0 (IBM Corp., USA). 
A p value < 0.05 was considered significant. ORs < 1 and > 1 indicated negative and positive 
associations, respectively.

RESULTS

Antimicrobial susceptibilities and ESBL production
All E. coli isolates were resistant to at least one antimicrobial agent (Table 2). The highest 
percentage resistance was observed against AMP (83.0%) and TET (81.9%), followed by 
STR (75.7%), TGC (72.8%), and SMX (60.4%), as shown in (Fig. 1). Only 2.25% of the E. coli 
isolates were resistant to CIP. The resistance rates to COL and CHL were 27.6% and 24.2%, 
respectively. None of the isolates were resistant to MERO. Ten out of 177 E. coli isolates (5.6%) 
were resistant to FOT and TAZ. Nine isolates (5.1%) were confirmed to be ESBL producers. 
MDR was observed in 86.4% of the E. coli isolates (n = 153). Seventy-five resistance patterns 
were identified, of which the most prevalent resistance patterns were AMP-STR-TET-TGC 
(6.21%), AMP-STR-TET (5.64%), and AMP-TET-TGC (5.64%) (Table 2).
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Table 2. AMR pattern of Escherichia coli isolated from meat ducks (n = 177)
AMR patterna Number of isolates (%)
AMP-TET 4 (2.25)
STR-SMX 4 (2.25)
AMP-STR-TET 10 (5.64)
AMP-TET-TGC 10 (5.64)
STR-SMX-TGC 5 (2.82)
AMP-STR-TET-TGC 11 (6.21)
AMP-AZI-STR-TET-TGC 6 (3.38)
AMP-STR-TET-TGC-TMP 5 (2.82)
AMP-STR-SMX-TET-TGC-TMP 8 (4.51)
AMP-COL-STR-SMX-TET-TGC-TMP 4 (2.25)
AMP-CHL-COL-STR-SMX-TET-TGC-TMP 7 (3.38)
AMP-CHL-COL-NAL-STR-SMX-TET-TGC-TMP 5 (2.82)
AMR, antimicrobial resistance; AMP, ampicillin; TET, tetracycline; STR, Streptomycin; SMX, sulfamethoxazole; 
TGC, Tigecycline; AZI, azithromycin; TMP, trimethoprim; COL, colistin; CHL, chloramphenicol; NAL, Nalidixic acid.
aThe AMR pattern with at least four isolates are shown.

https://www.pubmlst.org/plasmid/


Transfer of R plasmids and conjugation efficiency
Thirteen E. coli isolates transferred AMR conjugally in a single antibiotic selective pressure, 
including TET (n = 4/13), AMP (n = 3/13), and CHL (n = 3/13), of which the conjugation 
rates vary from 4.76 × 10−8 to 9.5 × 10−7 (Table 3). The three isolates transferred the plasmid 
horizontally in either AMP or TET selective pressure. None of the transconjugants were 
obtained when COL was used as a selective pressure. One of these three isolates (i.e., 
C249) transferred blaCTX-M1 to corresponding transconjugants. All transconjugants exhibited 
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Fig. 1. Distribution of AMR among E. coli isolates in meat ducks (n = 177). 
AMR, antimicrobial resistance; AMP, ampicillin; AZI, azithromycin; FOT, cefotaxime; TAZ, ceftazidime; CHL, chloramphenicol; CIP, ciprofloxacin; COL, colistin; 
GEN, gentamicin; MERO, meropenem; NAL, Nalidixic acid; STR, Streptomycin; SMX, sulfamethoxazole; TET, tetracycline; TGC, Tigecycline; TMP, trimethoprim; 
MDR, multidrug resistance.

Table 3. Resistance phenotypes and plasmid replicon types of donors (n = 13) and their corresponding transconjugants (n = 16)
Donors Transconjugants Conjugation 

rateID Resistance pattern Inc group FAB 
formula

Selective 
pressure

ID Resistance pattern Inc 
group

A144 AMP-STR-TET-TGC FrepB, FIC F29:A-
:B23

Ampicillin A144Z1 AMP-TET-TGC FrepB 4.76 × 10−8

A183 AMP-STR-TET-TGC FrepB F29:A-:B- Ampicillin A183Z1 AMP FrepB 9.5 × 10−7

B206 AMP-STR-SMX-TET-TMP - - Tetracycline B206Z1 AMP-STR-SMX-TET-TGC-TMP - 9.5 × 10−7

B136 AMP-COL-STR-SMX-TET-TGC-TMP - - Tetracycline B136Z1 AMP-STR-SMX-TET-TMP - 9.5 × 10−7

B170 AMP-CHL-COL-STR-SMX-TET-TMP - - Chloramphenicol B170Z1 CHL - 1.11 × 10−8

B173 AMP-CHL-COL-STR-SMX-TET-TGC-TMP - - Chloramphenicol B173Z1 CHL-COL - 2.7 × 10−7

C248 AMP-CHL-COL-NAL-STR-SMX-TET-TGC-TMP FIB, FIC, 
FrepB

F18:A:-B- Chloramphenicol C248Z1 CHL FrepB 6.3 × 10−7

C250 AMP-FOT-TAZ-CHL-COL-GEN-STR-SMX-TET-TGC FrepB F47:A:-B- Tetracycline C250Z1 AMP-AZI-COL-TET - 2.1 × 10−7

C200 AMP-STR-SMX-TET-TGC-TMP - - Ampicillin C200Z1 AMP-STR-SMX-TET-TGC-TMP - 2.1 × 10−7

A175 AMP-STR-TET I1 - Tetracycline A175Z1 TET - 9.5 × 10−7

A198 AMP-FOT-TET-TGC - - Ampicillin A198Z1 AMP-FOT-TET - 6 × 10−7

Tetracycline A198Z2 AMP-FOT-TET - 6 × 10−7

C249 AMP-FOT-TAZ-CHL-COL-GEN-STR-SMX-TET-TGC FrepB F47:A-:B- Ampicillin C249Z1 AMP-FOT-TAZ-CHL-GEN-STR-TET-TGC FrepB 2.1 × 10−7

Tetracycline C249Z2 AMP-FOT-TAZ-CHL-GEN-STR-TET FrepB 4.23 × 10−7

C253 AMP-STR-TET-TGC - F4:A-:B- Ampicillin C253Z1 AMP-STR-TET-TGC - 9.5 × 10−7

Tetracycline C253Z2 AMP-STR-SMX-TET-TGC - 1.9 × 10−8

Inc, incompatibility; AMP, ampicillin; STR, Streptomycin; TET, tetracycline; TGC, Tigecycline; SMX, sulfamethoxazole; TMP, trimethoprim; COL, colistin; CHL, 
chloramphenicol; NAL, Nalidixic acid; FOT, cefotaxime; TAZ, ceftazidime; GEN, gentamicin; AZI, azithromycin.



resistance to other antibiotics in addition to the antibiotic selection pressures, and most 
were multidrug resistant. Some transconjugants selected by AMP and TET (i.e., C249Z1 and 
C249Z2, respectively) were resistant to CHL. At the same time, CHL and TET were used to 
select the transconjugants resistant to COL (i.e., B173Z1 and C250Z1, respectively).

Plasmid replicon types (n = 29) and replicon sequence types of IncF plasmids 
(n = 6)
Five replicon types were found among the E. coli donors (n = 13) and their respective 
transconjugants (n = 16). The most common replicon identified in E. coli donors was IncFrepB 
(n = 5/13), followed by IncFIC (n = 2/13). The other replicons identified were IncI1 (n = 1/13), 
IncY (n = 1/13) and IncFIB (n = 1/13). The most common replicon identified among the 
transconjugants was IncFrepB (n = 5/16). Although IncFrepB was found in the donors and 
transconjugants, some donors and transconjugants did not carry Inc plasmids tested in this 
study. The six E. coli isolates with IncF replicon possessed different IncF replicon sequence 
types according to pMLST analysis. Five FAB formulas were identified including C249 and 
C250, F47:A-:B-; A144, F29:A-:B23; A183, F29:A-:B-; C248, F18:A-:B- and C253, F4:A-:B- 
(Table 3).

Association among AMR phenotype in E. coli isolates (n = 177)
Different associations among the AMR phenotypes in the E. coli isolates (n = 177) were 
observed (Table 4). Overall, the resistance phenotypes showed more positive than negative 
relationships with each other. The strongest positive association was observed between AMP 
and TET resistance (OR, 50.3; confidence interval [CI], 17–148), followed by CHL and SMX 
resistance (OR, 44.5; CI, 5.9–333). Chloramphenicol resistance was positively associated with 
all antibiotics tested except for TGC. A strong positive association (OR > 10) was observed 
between CHL resistance and resistance to COL, GEN, SMX, and TET. No positive association 
was observed between MDR and the AMR phenotype, but some showed a significant 
association (p < 0.05).

DISCUSSION

The published data on livestock was also used to compare the findings in this study 
because there is currently limited information on AMR in bacteria originating from meat 
ducks. One of the key findings was the high percentage of MDR commensal E. coli (86.4%) 
from meat ducks raised in the open house system. The E. coli isolates in this collection 
exhibited a greater percentage of MDR than those from ducks in Tanzania [33] and Korea 
[34] but comparable to that in pigs, pig carcasses, and humans in Thailand [23]. As duck 
manure is usually discharged directly into the rearing area, the significant role of meat ducks in 
the environmental dissemination of AMR bacteria and their resistance determinants was 
underlined.

The E. coli isolates in this study exhibited the highest resistance rates to AMP (83.0%) and 
TET (81.9%), surpassing those observed in a previous study [34]. Prolonged use of antibiotics 
in food animal production, including duck production, was likely the cause of such a high 
resistance rate. The high AMP resistance corresponded well to the fact that amoxicillin is 
the most used antibiotic in duck farming. Ampicillin has been suggested to be included in 
the antimicrobial panel for AMR monitoring [12]. This was attributed to cross-resistance 
between AMP and amoxicillin, suggesting that AMP-resistant bacteria are mostly resistant 
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to amoxicillin. The resistance to TET was more common than in Tanzania [33], but lower 
than that of the pathogenic E. coli from ducks in China [35]. The differences could be brought 
about by differences in geographical location, availability of antibiotics, antimicrobial usage 
form, and antibiotics administration. Future antimicrobial use (AMU) situation analysis is 
suggested to comprehend the AMR dynamics. Compared to livestock, the high AMP and TET 
resistance rates agree with previous studies conducted in commensal E. coli from different 
sources, e.g., pigs in Vietnam [36], hens in Thailand [37], healthy swine in Thailand [38], and 
chickens in China [39]. In addition, a low resistance rate to CIP (2.2%) was observed, which 
is in line with E. coli from pigs in Vietnam [36] and Thailand [21].

A particular concern has been raised about the emergence and spread of resistant bacteria 
of food animal origin to last-resort antibiotics (e.g., COL, MERO, and third-generation 
cephalosporins) that may enter the food chain and the environment. In this study, 28% of 
E. coli were resistant to COL, inconsistent with a study on ducks [34] but similar to previous 
studies on livestock and poultry. Colistin is one of the highest priorities and critically 
important antibiotics, but it has been used extensively in pig farming. No participating 
farms in this study declared the use of COL. The conjugation experiment suggested that 
COL resistance was transferred when CHL (in B173Z1) and TET (in C250Z1) were used as the 
selective pressure. This observation points to co-selection mediated by other antibiotics as 
a mechanism contributing to the presence of COL-resistant E coli. On the other hand, other 
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Table 4. Association between AMR phenotypes in E. coli isolates (n = 177)
Associations between AMR phenotypes

No.a AMP AZI FOT CHL COL GEN NAL STR SMX TET TGC TMP
AMP 147 NS 8.0 

(1.0–61.5)
-b 1.2 

(1.1–1.4)
14.6 

(1.8–106)
- - - - 50.3 

(17–148)
- 11.4 

(2.6–49.6)
AZI 33 8.0 

(1.0–61.5)
NS - 3.4 

(1.5–7.6)
- 3.8 

(0.9–15.1)
- - 2.3 

(0.9–5.5)
1.2 

(1.1–1.4)
3.1  

(1–9.6)
-

FOT 10 - - NS 5.2 
(1.4–19.6)

4.3  
(1.1–1)

21.6 
(4.5–101)

- - - - - -

TAZ 4 - - 28.8  
(13.1–63.2)

4.4 
(3.3–5.8)

3.8 
(2.9–2.9)

34.6 
(14.5–82)

- - - - - -

CHL 43 1.2 
(1.1–1.4)

3.4 
(1.5–7.6)

5.2 
(1.4–19.6)

NS 24.3 
(10–58)

30.4 
(3.6–251)

7.3  
(2–21)

3  
(1.1–8.2)

44.5 
(5.9–333)

12.6 
(1.6–95)

- 7.9 
(3.6–17.3)

CIP 4 - - - 4.4 
(3.3–5.8)

8.2 
(0.8–82.6)

- - - - - - 2.7 
(2.2–3.28)

COL 49 14.6 
(1.8–106)

- 4.3 
(1.1–16.0)

24.3 
(10–58)

NS 10.5 
(2–52.0)

4.3 
(1.5–12)

3.7  
(1–10)

4.8  
(2–11)

7.1 
(1.6–31.3)

2.8 
(1.1–6.8)

3.3 
(1.6–6.5)

GEN 9 - 3.8 
(0.9–15.1)

21.6 
(4.5–101)

30.4 
(3.6–251)

10.5 
(2.5–51)

NS - - 1.7 
(1.5–1.9)

- - -

NAL 17 - - - 7.3 
(2.5–21.3)

4.3  
(1.5–12)

- NS 1.3 
(1.2–1.5)

5.5  
(1.2–25)

- 6.6 
(0.8–51.6)

6.2 
(1.9–19)

STR 134 - - - 3  
(1.1–8.2)

3.7 
(1.36–10)

- 1.3 
(1.2–1.5)

NS 2.4 
(1.2–4.8)

- - 3.5 
(1.5–8.2)

SMX 107 - 2.3 
(0.9–5.5)

- 44.5 
(5.9–333)

4.8  
(2–11)

1.7 
(1.5–1.9)

5.5 
(1.2–25)

2.4 
(1.2–4.8)

NS - - 5.3 
(2.5–11)

TET 145 50.3 
(17–148)

1.2 
(1.1–1.4)

- 12.6 
(1.6–95)

7.1 
(1.6–31.3)

- - - - NS - 3.2 
(1.2–8.3)

TGC 129 - 3.1  
(1–9.6)

- - 2.8 
(1.1–6.8)

- 6.6 
(0.8–51)

- - - NS -

TMP 68 11.4 
(2.6–49.6)

- - 7.9 
(3.6–17.3)

3.3 
(1.6–6.5)

- 6.2 
(1.9–19)

3.5 
(1.5–8.2)

5.3  
(2.5–11)

3.2 
(1.2–8.3)

- NS

Data shown are odds ratio for significant associations between AMR phenotypes (95% confidence interval in parenthesis); OR>1 and <1 shows positive and 
negative associations respectively.
AMR, antimicrobial resistance; AMP, ampicillin; AZI, azithromycin; FOT, cefotaxime; CHL, chloramphenicol; COL, colistin; GEN, gentamicin; NAL, nalidixic acid; 
STR, streptomycin; SMX, sulfamethoxazole; TET, tetracycline; TGC, tigecycline; TMP, trimethoprim; NS, no statistics determined.
aNumber of isolates resistant to corresponding antimicrobial agents.
bNo statistically significant (p ≥ 0.05).



possible reasons exist, e.g., environmental contamination and transmission from workers 
and other animals. Therefore, further studies are needed to understand the dynamics of COL 
resistance in the interconnected ecosystems of humans, animals, and environmental health.

In contrast, the FOT (5.6%) and TAZ (2.2%) resistance rates were also still at limited 
levels, and no MERO resistance was found, in agreement with a previous study [34]. Very 
limited resistance to these last resorts could be attributed to their limited use in meat duck 
production. Despite the low resistance rates, commensal E. coil resistant to COL and third-
generation cephalosporins raised alarm bells about the prevalence of the relevant genes that 
are mostly plasmid-encoded.

ESBL-producing E. coli was found (5.0%, n = 9/177) at a lower level than previous studies 
conducted in backyard ducks (36.6%) and chickens (24.9%) in Thailand [40] and backyard 
ducks (> 50%) in China [41]. Ducks generally discharge their feces directly into water 
reservoirs, facilitating the rapid spread of ESBL-producing E. coli among duck populations 
and the environment. Despite the small percentage of ESBL-producing E. coli observed, all 
were MDR. This is consistent with ESBL producers frequently displaying MDR [42].

Conjugal transfer was observed under the selection pressure of AMP, TET, and CHL. In 
contrast, no transconjugants were obtained under COL selective pressure, consistent with a 
previous study in food animals in China [43]. This may be due to the lack of mobile genetic 
elements carrying COL resistance genes, plasmid incompatibility, low transfer frequency, 
and experimental conditions [44]. The in vitro conjugation of plasmids may not fully mirror 
the phenomena in vivo because of the absence of some factors that lower the transfer efficacy 
under in vitro.

Despite the ban from being used in food animals since 1994, CHL-resistant E. coli isolates 
were isolated in this study, which agrees with previous livestock studies [45]. It was suggested 
to be the consequence of co-selection and cross-resistance induced by other antibiotics [46]. 
This agrees with the results in this study, where AMP and TET were co-selected for CHL-
resistant transconjugants (i.e., C249Z1 and C249Z2).

The correlation between the AMR phenotypes varied. The strongest association was between 
AMP and TET resistance (OR, 50.3), consistent with the high resistance rates to these two 
antibiotics, suggesting that the corresponding resistance genes co-localized on the same 
genetic elements. Chloramphenicol resistance was positively associated with almost all 
antibiotics tested, with a strong correlation (OR > 10) with resistance to the antibiotics 
commonly used in livestock and poultry (e.g., GEN [OR > 30.4] and SMX [OR > 44.5]). 
The results indicate the co-localization of genes encoding CHL resistance and resistance to 
other antibiotics on the same genetic elements. Hence, the genes encoding resistance to 
CHL and others co-localize on the same genetic elements. Therefore, initiatives to regulate 
antimicrobials should be carried out from a whole-system perspective.

IncF is a predominant Inc group in Enterobacteriaceae [32], which agrees with the current 
study. The IncFrepB plasmid was found in most MDR E. coli from meat ducks in this 
collection, which is in agreement with previous studies on livestock [22]. Interestingly, some 
donors and their corresponding transconjugants did not carry the same Inc plasmids despite 
the transfer of resistance phenotype (i.e., C250/C250Z1 and C175/A175Z1). The latter may be 
because the bacterial strains carry plasmids in Inc groups that were not detected by the PBRT 
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scheme used in this study, suggesting that the detection scheme of Inc plasmids should be 
expanded to cover many other different Inc groups.

In conclusion, the commensal E. coli from meat ducks in this study exhibited high rates of 
AMR, with the majority demonstrating MDR. The results highlight the significant role of 
meat ducks as reservoirs for E. coli with a range of plasmids and AMR determinants present in 
duck manure released directly into the environment. They may transfer to humans through 
the food chain. The authors fervently advocate for including meat duck-associated bacteria 
in AMR monitoring and surveillance programs as an element of the One Health concept. 
Nationwide monitoring and surveillance to collect and track AMU data in ducks raised for 
food should be established and conducted routinely. The strategic actions to reduce the 
emergence and prevent the spread of AMR in livestock should also be expanded to meat duck 
production.
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