DOI QR코드

DOI QR Code

Identification of concurrent infection with Jaagsiekte sheep retrovirus and maedi-visna virus in China

  • Xujie Duan (College of Veterinary Medicine, Inner Mongolia Agricultural University) ;
  • Xiaona Shi (College of Veterinary Medicine, Inner Mongolia Agricultural University) ;
  • Pei Zhang (College of Veterinary Medicine, Inner Mongolia Agricultural University) ;
  • Xiaoyue Du (College of Veterinary Medicine, Inner Mongolia Agricultural University) ;
  • Sixu Chen (College of Veterinary Medicine, Inner Mongolia Agricultural University) ;
  • Liang Zhang (College of Veterinary Medicine, Inner Mongolia Agricultural University) ;
  • Huiping Li (College of Veterinary Medicine, Inner Mongolia Agricultural University) ;
  • Yufei Zhang (College of Veterinary Medicine, Inner Mongolia Agricultural University) ;
  • Jinling Wang (College of Veterinary Medicine, Inner Mongolia Agricultural University) ;
  • Yulin Ding (College of Veterinary Medicine, Inner Mongolia Agricultural University) ;
  • Shuying Liu (College of Veterinary Medicine, Inner Mongolia Agricultural University)
  • 투고 : 2024.06.19
  • 심사 : 2024.07.14
  • 발행 : 2024.09.30

초록

Importance: Ovine pulmonary adenomatosis (OPA) and maedi-visna disease (MVD) are chronic and progressive infectious diseases in sheep caused by Jaagsiekte sheep retrovirus (JSRV) and maedi-visna virus (MVV), respectively. Objective: To investigate the pathological changes and conduct viral gene analysis of OPA and MVD co-occurrence in Inner Mongolia, China. Methods: Using gross pathology, histopathology, immunohistochemistry, ultrastructural pathology, PCR, and sequence analysis, we investigated the concurrent infection of JSRV and MVV in 319 Dorper rams slaughtered in a private slaughterhouse in Inner Mongolia, in 2022. Results: Of the 319 rams included, 3 showed concurrent JSRV and MVV infection. Gross lung pathology showed diffuse enlargement, consolidation, and greyish-white miliary nodules on the lung surface; the trachea was filled with a white foamy fluid; hilar and mediastinal lymph nodes were significantly enlarged. Histopathology results revealed typical OPA and MVD lesions in the lung tissue. Immunohistochemical results were positive for JSRV envelope protein (Env) in the tumor cells and MVV CA in alveolar macrophages. Transmission electron microscopy showed several virions and autophagosomes in the lung tissue, severely damaged mitochondria, and the induced mitophagy. Nucleotide sequences obtained for JSRV env and MVV gag showed the highest homology with the Inner Mongolian strains of JSRV env (JQ837489) and MVV gag (MW248464). Conclusions and Relevance: Our study confirmed that OPA and MVD co-occurrence and identified the pathological changes in Inner Mongolia, China, thereby providing references for the identification of concurrent JSRV and MVV infections.

키워드

과제정보

We are grateful to Dr. Kai Zhang, Dr. Yuanyuan Zhang, Dr. Jiamin Zhao and Mr. Bo Feng for their help in the experiment.

참고문헌

  1. Toma C, Balteanu VA, Tripon S, Trifa A, Rema A, Amorim I, et al. Exogenous Jaagsiekte sheep retrovirus type 2 (exJSRV2) related to ovine pulmonary adenocarcinoma (OPA) in Romania: prevalence, anatomical forms, pathological description, immunophenotyping and virus identification. BMC Vet Res. 2020;16(1):296-311.
  2. Martineau HM, Cousens C, Imlach S, Dagleish MP, Griffiths DJ. Jaagsiekte sheep retrovirus infects multiple cell types in the ovine lung. J Virol. 2011;85(7):3341-3355.
  3. Zhao L, Zhang L, Shi X, Duan X, Li H, Liu S. Next-generation sequencing for the genetic characterization of maedi/visna virus isolated from the northwest of China. J Vet Sci. 2021;22(6):e66.
  4. Griffiths DJ, Martineau HM, Cousens C. Pathology and pathogenesis of ovine pulmonary adenocarcinoma. J Comp Pathol. 2010;142(4):260-283.
  5. Thormar H. The origin of lentivirus research: maedi-visna virus. Curr HIV Res. 2013;11(1):2-9.
  6. World Organisation for Animal Health (WOAH). Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Maedi-visna and ovine pulmonary adenocarcinoma [Internet]. WOAH. Published 2003. Updated 2021. Accessed 2023. https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/3.08.02_CAE_MV.pdf
  7. Dawson M, Done SH, Venables C, Jenkins CE. Maedi-visna and sheep pulmonary adenomatosis: a study of concurrent infection. Br Vet J. 1990;146(6):531-538.
  8. Albayrak H, Yazici Z, Okur-Gumusova S, Ozan E. Maedi-visna virus infection in Karayaka and Amasya Herik breed sheep from provinces in northern Turkey. Trop Anim Health Prod. 2012;44(5):939-941.
  9. Gonzalez L, Juste RA, Cuervo LA, Idigoras I, Saez de Ocariz C. Pathological and epidemiological aspects of the coexistence of maedi-visna and sheep pulmonary adenomatosis. Res Vet Sci. 1993;54(2):140-146.
  10. Sharp JM, DeMartini JC. Natural history of JSRV in sheep. Curr Top Microbiol Immunol. 2003;275:55-79.
  11. Gomez-Lucia E, Barquero N, Domenech A. Maedi-Visna virus: current perspectives. Vet Med (Auckl). 2018;9:11-21.
  12. Chen SX, Wang DZ, Xu XD, Liu SY. Preparation and specificity of polyclonal antibody against intact envelope protein of Jaagsiekte sheep retrovirus. Chin Vet Sci. 2021;51(12):1548-1553.
  13. Chen SX, Zhang P, Shi XN, Liu R, Liu SY. Prokaryotic expression of CA-TM fusion protein of maedi-visna virus in sheep and establishment of indirect ELISA method. Chin J Prev Vet Med. 2022;44(12):1290-1297.
  14. Zhu M, Pan J, Zhang M, Tong X, Zhang Y, Zhang Z, et al. Bombyx mori cypovirus (BmCPV) induces PINK1-Parkin mediated mitophagy via interaction of VP4 with host Tom40. Dev Comp Immunol. 2022;126:104244.
  15. Palmarini M, Holland MJ, Cousens C, Dalziel RG, Sharp JM. Jaagsiekte retrovirus establishes a disseminated infection of the lymphoid tissues of sheep affected by pulmonary adenomatosis. J Gen Virol. 1996;77(Pt 12):2991-2998.
  16. Peterhans E, Greenland T, Badiola J, Harkiss G, Bertoni G, Amorena B, et al. Routes of transmission and consequences of small ruminant lentiviruses (SRLVs) infection and eradication schemes. Vet Res. 2004;35(3):257-274.
  17. Janardhan YE, Prabhakar YK, Sreenath K, Vijayakumar P, Vijayakumar N, Subhashini K, et al. Molecular investigation and phylogenetic analysis of Jaagsiekte sheep retrovirus in naturally ovine pulmonary adenocarcinoma infected small ruminants in Andhra Pradesh, India. Comp Clin Pathol. 2021;30(5):735-742.
  18. Rosadio RH, Sharp JM, Lairmore MD, Dahlberg JE, De Martini JC. Lesions and retroviruses associated with naturally occurring ovine pulmonary carcinoma (sheep pulmonary adenomatosis). Vet Pathol. 1988;25(1):58-66.
  19. Zhang K, Kong H, Liu Y, Shang Y, Wu B, Liu X. Diagnosis and phylogenetic analysis of ovine pulmonary adenocarcinoma in China. Virus Genes. 2014;48(1):64-73.
  20. Summers C, Norval M, De Las Heras M, Gonzalez L, Sharp JM, Woods GM. An influx of macrophages is the predominant local immune response in ovine pulmonary adenocarcinoma. Vet Immunol Immunopathol. 2005;106(3-4):285-294.
  21. De las Heras M, Gonzalez L, Sharp JM. Pathology of ovine pulmonary adenocarcinoma. Curr Top Microbiol Immunol. 2003;275:25-54.
  22. Brellou GD, Angelopoulou K, Poutahidis T, Vlemmas I. Detection of maedi-visna virus in the liver and heart of naturally infected sheep. J Comp Pathol. 2007;136(1):27-35.
  23. Payne AL, Verwoerd DW. A scanning and transmission electron microscopy study of Jaagsiekte lesions. Onderstepoort J Vet Res. 1984;51(1):1-13.
  24. Thormar H. An electron microscope study of tissue cultures infected with visna virus. Virology. 1961;14(4):463-475.
  25. Bolat I, Yildirim S, Saglam YS, Comakli S, Kiliclioglu M, Dereli E. Investigation of the effects of pulmonary adenomatosis on oxidative DNA damage, inflammation, apoptosis, and autophagy in lung tissues in sheep. Small Rumin Res. 2024;230:107171.
  26. Zhang L, Yang H, Duan X, Li H, Xu S, Chen H, et al. Modulation of autophagy affected tumorigenesis induced by the envelope glycoprotein of JSRV. Virology. 2024;594:110059.
  27. Shi X, Zhang Y, Chen S, Du X, Zhang P, Duan X, et al. Differential gene expression and immune cell infiltration in maedi-visna virus-infected lung tissues. BMC Genomics. 2024;25(1):534.
  28. Kalogianni AI, Bossis I, Ekateriniadou LV, Gelasakis AI. Etiology, epizootiology and control of maedivisna in dairy sheep: a review. Animals (Basel). 2020;10(4):616-630.
  29. Azizi S, Tajbakhsh E, Fathi F. Ovine pulmonary adenocarcinoma in slaughtered sheep: a pathological and polymerase chain reaction study. J S Afr Vet Assoc. 2014;85(1):932-937.
  30. Zhang Y, Shi J, Liu S. Recent advances in the study of active endogenous retrovirus envelope glycoproteins in the mammalian placenta. Virol Sin. 2015;30(4):239-248.
  31. Bai J, Zhu RY, Stedman K, Cousens C, Carlson J, Sharp JM, et al. Unique long terminal repeat U3 sequences distinguish exogenous Jaagsiekte sheep retroviruses associated with ovine pulmonary carcinoma from endogenous loci in the sheep genome. J Virol. 1996;70(5):3159-3168.
  32. Palmarini M, Hallwirth C, York D, Murgia C, de Oliveira T, Spencer T, et al. Molecular cloning and functional analysis of three type D endogenous retroviruses of sheep reveal a different cell tropism from that of the highly related exogenous Jaagsiekte sheep retrovirus. J Virol. 2000;74(17):8065-8076.
  33. Liu SL, Miller AD. Transformation of madin-darby canine kidney epithelial cells by sheep retrovirus envelope proteins. J Virol. 2005;79(2):927-933.
  34. Leroux C, Girard N, Cottin V, Greenland T, Mornex JF, Archer F. Jaagsiekte sheep retrovirus (JSRV): from virus to lung cancer in sheep. Vet Res. 2007;38(2):211-228.
  35. Woldemeskel M, Tibbo M. Pulmonary adenomatosis and maedi-visna in Ethiopian central highland sheep: a microscopic study. Trop Anim Health Prod. 2010;42(5):995-999.
  36. Alvarez V, Daltabuit-Test M, Arranz J, Leginagoikoa I, Juste RA, Amorena B, et al. PCR detection of colostrum-associated maedi-visna virus (MVV) infection and relationship with ELISA-antibody status in lambs. Res Vet Sci. 2006;80(2):226-234.
  37. Mahmoud NA, Elshafei AM, Almofti YA. A novel strategy for developing vaccine candidate against Jaagsiekte sheep retrovirus from the envelope and gag proteins: an in-silico approach. BMC Vet Res. 2022;18(1):343.
  38. Blacklaws BA. Small ruminant lentiviruses: immunopathogenesis of visna-maedi and caprine arthritis and encephalitis virus. Comp Immunol Microbiol Infect Dis. 2012;35(3):259-269.
  39. Kockaya ES, Can H, Yaman Y, un C. In silico discovery of epitopes of gag and env proteins for the development of a multi-epitope vaccine candidate against maedi visna virus using reverse vaccinology approach. Biologicals. 2023;84:101715.
  40. Gray ME, Meehan J, Sullivan P, Marland JR, Greenhalgh SN, Gregson R, et al. Ovine pulmonary adenocarcinoma: a unique model to improve lung cancer research. Front Oncol. 2019;9:335.
  41. Valgerdur A. Maedi-visna virus as a model for HIV. Icel Agric Sci. 2018;31:23-47.