DOI QR코드

DOI QR Code

Bioassessment of the quality of surface waters of the Chipoco River using indicators of epilithic diatoms in macrophytes from the mining district of Hidalgo, Mexico

  • Maria Jesus Puy-Alquiza (Engineering Division, Department of Mines, Metallurgy and Geology, University of Guanajuato, Campus Guanajuato) ;
  • Raul Miranda-Aviles (Engineering Division, Department of Mines, Metallurgy and Geology, University of Guanajuato, Campus Guanajuato) ;
  • Yuriko Jocselin Martinez Hernandez (Department of Marine and Coastal Sciences, Universidad Autooma de Baja California Sur) ;
  • Miren Yosune Miranda Puy (Department of Agrogenomic Sciences, National School of Higher Studies, Leon Unit, National Autonomous University of Mexico) ;
  • Gabriela A Zanor (Department of Environmental Sciences, Life Sciences Division, University of Guanajuato, Campus Irapuato-Salamanca) ;
  • Cristina Daniela Moncada Sanchez (Engineering Division, Department of Mines, Metallurgy and Geology, University of Guanajuato, Campus Guanajuato)
  • Received : 2024.02.13
  • Accepted : 2024.06.08
  • Published : 2024.09.30

Abstract

Background: In this research work, epilithic communities of diatoms in macrophytes are listed and described to evaluate the ecological conditions of the surface waters of the Chipoco River, whose basin has been exploited for agricultural and mining purposes, degrading natural ecosystems. The diatoms studied are found in calcareous tufa deposits developed in swampy environments where little of their benthic microbiota has been studied, despite the regional relevance of these calcareous formations within the manganese mining district. To describe the diatoms and evaluate the ecological condition of the surface waters, the Chipoco River was divided into three sectors (North, Center, and South) collecting a total of 15 samples along 10 km. For the taxonomic identification of diatoms, scanning electron microscopy techniques, consultations with specialists and specialized literature were used. To evaluate the ecological conditions of the Chipoco River, the linear correlation coefficient was used, where the relationships between diatom species and environmental variables were evaluated. Likewise, species diversity was determined by applying the Shannon-Wiener index and Simpson's dominance value (D) was calculated to detect diversity impoverishment processes. Results: Ten genera of diatoms were identified in bryophytes of the species Plagiomnium cuspidatum that grow on the banks of said river. The linear correlation coefficient indicated that physicochemical characteristics such as total dissolved solids, temperature, and calcium, and hydrochemical characteristics of the water intervene in the distribution and abundance of four diatoms Rhoicosphenia abreviate, Epithemia turgida, Calloneis bacillum and Achanthidium minutissimum in the different sectors studied. The Shannon-Wiener diversity indices and Simpson's dominance show that there is greater diversity and marked dominance of diatoms in the northern sector compared to the central and southern sectors. Conclusions: Agricultural and mining activities and the poor sanitary infrastructure of human settlements have caused the Chipoco River to have poor ecological quality.

Keywords

Acknowledgement

Our thanks to the laboratory LICAMM for its support in the realization of the analysis of X-ray diffraction, X- fluorescence ray, and the SEM.

References

  1. Abarca-Mejia NC. Diatom community analysis and quality assessment of the polluted tropical Lerma River (Mexico) [PhD dissertation]. Berlin: Freie Universitat Berlin; 2010.
  2. Ajuaba S, Arenas C, Capezzuoli E. Sedimentology of Pleistocene palustrine tufas and associated deposits of the Ebron Valley (Iberian Ranges, Spain). Estud Geol. 2021;77(1):e137. https://doi.org/10.3989/egeol.44131.593.
  3. Ali AD, Ezra AG, Abdul SD. Species composition and distribution of freshwater diatoms from upper Dilimi River, Jos, Nigeria. IOSR J Pharm Biol Sci. 2015;10(5):53-60.
  4. Alvarez-Blanco I, Blanco S, Cejudo-Figueiras C, Becares E. The Duero Diatom Index (DDI) for river water quality assessment in NW Spain: design and validation. Environ Monit Assess. 2013;185(1):969-81. https://doi.org/10.1007/s10661-012-2607-z.
  5. Arenas C, Osacar C, Sancho C, Vazquez-Urbez M, Auque L, Pardo G. Seasonal record from recent fluvial tufa deposits (Monasterio de Piedra, NE Spain): sedimentological and stable isotope data. Geol Soc Lond Spec Publ. 2010;336(1):119-42. https://doi.org/10.1144/SP336.7.
  6. Avila FJO, Garcia GM. Phycoperiphyton associated to macrophytes in the swamp of Cerro San Antonio, Magdalena-Colombia. Intropica Rev Inst Investig Trop. 2015;10(1):74-83.
  7. Bahls L, Boynton B, Johnston B. Atlas of diatoms (Bacillariophyta) from diverse habitats in remote regions of western Canada. PhytoKeys. 2018;105:1-186. https://doi.org/10.3897/phytokeys.105.23806.
  8. Beraldi-Campesi H, Arenas-Abad C, Auque-Sanz L, Vazquez-Urbez M, Pardo-Tirapu G. Benthic diatoms on fluvial tufas of the Mesa River, Iberian Range, Spain. Hidrobiologica. 2016;26(2):283-97.
  9. Bojorge-Garcia M, Carmona J, Beltran Y, Cartajena M. Temporal and spatial distribution of macroalgal communities of mountain streams in Valle de Bravo Basin, central Mexico. Hydrobiologia. 2010;641:159-69. https://doi.org/10.1007/s10750-009-0074-5.
  10. Bojorge-Garcia M, Carmona J, Ramirez R. Species richness and diversity of benthic diatom communities in tropical mountain streams of Mexico. Inland Waters. 2014;4(3):279-92. https://doi.org/10.5268/IW-4.3.568.
  11. Carcavilla L, Vegas J, Cabrera AM. [Establishment of a specific typology of tuff formations. series. Methodologies for monitoring the conservation status of habitat types]. Madrid: Ministerio para la Transicion Ecologica; 2019. 20 p. Spanish.
  12. Carmona-Jimenez J, Ramirez-Rodriguez R, Bojorge-Garcia MG, Gonzalez Hidalgo B, Cantoral-Uriza EA. [Study of the indicator value of benthic algal communities: a proposal for evaluation and application in the Magdalena River, Mexico City]. Rev Int Contam Ambient. 2016;32(2):139-52. Spanish. https://doi.org/10.20937/RICA.2016.32.02.01.
  13. Cattaneo A, Asioli A, Comoli P, Manca M. Organisms' response in a chronically polluted lake supports hypothesized link between stress and size. Limnol Oceanogr. 1998;43(8):1938-43. https://doi.org/10.4319/lo.1998.43.8.1938.
  14. Celekli A, Lekesiz O. Eco-assessment of West Mediterranean basin's rivers (Turkey) using diatom metrics and multivariate approaches. Environ Sci Pollut Res Int. 2020;27(22):27796-806. https://doi.org/10.1007/s11356-020-09140-1.
  15. Celekli A, Toudjani AA, Gumus EY, Kayhan S, Lekesiz HO, Cetin T. Determination of trophic weight and indicator values of diatoms in Turkish running waters for water quality assessment. Turk J Bot. 2019;43(1):90-101. https://doi.org/10.3906/bot-1704-40.
  16. Claudio Delgadillo M, Ma Angeles Cardenas S. [Bryophyte manual]. 2nd ed. Mexico City: Universidad Nacional Autonoma de Mexico; 1990. Spanish.
  17. Cocquyt C. Diatoms from a hot spring in Lake Tanganyika. Nova Hedwig. 1999;68(3):425-39. https://doi.org/10.1127/nova.hedwigia/68/1999/425.
  18. Compere P. Some algae from the Red Sea Hills in north-eastern Sudan. In: Dumont HJ, el Moghraby AI, Desougi LA, editors. Limnology and marine biology in the Sudan. Developments in hydrobiology, vol 21. Dordrecht: Springer; 1984. p.61-77.
  19. Cox EJ. Identification of freshwater diatoms from live material. London: Chapman & Hall; 1996.
  20. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281(5374):237-40. https://doi.org/10.1126/science.281.5374.237.
  21. Ford TD, Pedley HM. A review of tufa and travertine deposits of the world. Earth Sci Rev. 1996;41(3-4):117-75. https://doi.org/10.1016/S0012-8252(96)00030-X.
  22. Garcia del Cura M, Sanz Montero ME, Rios ADL, Ascaso C. Biofilms, textures and isotope signatures in recent and ancient travertines Alhama de Almeria-Alicun (Province de Almeria, Spain). Geotemas. 2012;13:84-8.
  23. Gasse F. East African diatoms: taxonomy, ecological distribution. Berlin: J. Cramer; 1986. 203
  24. Gutierrez Lopez A. [Analysis of the quality of the water of rivers and reservoirs in the northeast of the province of Huelva based on the use of diatoms as bioindicators] [thesis]. Andalucia: Universidad Internacional de Andalucia; 2023. Spanish.
  25. Krammer K, Lange-Bertalot H. Suswasserflora von Mitteleuropa, Bd. February 4: Bacillariophyceae: Part 4: Achnanthaceae, Kritische Erganzungen zu Achnanthes s.l., Navicula s.str., Gomphonema, Gesamtliteraturverzeichnis Part 1-4, Erganzter Nachdruck, 2004. Heidelberg: Spektrum Akademischer Verlag; 2004. German.
  26. Lobo EA. [Periphyton as an indicator of water quality]. In: Schwarzbold A, Burliga AL, Torgan LC, editors. Ecologia del perifiton. Sao Carlos: RiMa; 2013. p. 205-33. Portuguese.
  27. Lobo EA, Callegaro VLM, Hermany G, Bes D, Wetzel CA, Oliveira MA. Use of epilithic diatoms as bioindicators from loticsystems in southern Brazil, with special emphasis oneutrophication. Acta Limnol Bras. 2004;16(1):25-40.
  28. Lobo EA, Schuch M, Heinrich CG, da Costa AB, Dupont A, Wetzel CE, et al. Development of the Trophic Water Quality Index (TWQI) for subtropical temperate Brazilian lotic systems. Environ Monit Assess. 2015;187(6):354. https://doi.org/10.1007/s10661-015-4586-3.
  29. Lobo EA, Wetzel CE, Schuch M, Ector L. [Epilithic diatoms as indicators of water quality in Brazilian subtropical lotic systems]. Santa Cruz do Sul: Edunisc; 2014. Portuguese.
  30. Margalef R. [Limnology]. Barcelona: Ediciones Omega; 1983. 1010 p. Spanish.
  31. Martinez de Fabricius AL, Maidana N, Gomez N, Sabater S. Distribution patterns of benthic diatoms in a Pampean river exposed to seasonal floods: the Cuarto River (Argentina). Biodivers Conserv. 2003;12:2443-54. https://doi.org/10.1023/A:1025857715437.
  32. Merz-Preiss M, Riding R. Cyanobacterial tufa calcification in two freshwater streams: ambient environment, chemical thresholds and biological processes. Sediment Geol. 1999;126(1-4):103-24. https://doi.org/10.1016/S0037-0738(99)00035-4.
  33. Montejano-Zurita G, Cantoral-Uriza EA, Carmona-Jimenez J. [Lotic environment algae in the lower basin of the Panuco River]. In: Luna I, Morrone JJ, Espinosa D, editors. [Biodiversity of the Sierra Madre Oriental]. Mexico, D.F: Universidad Nacional Autonoma de Mexico; 2004. p. 111-26. Spanish.
  34. Montoya H, Espinoza J. [Algae from the Ventanilla oxidation lagoons, Callao, Peru]. Boletin de Lima. 1985;42(1):41-68. Spanish.
  35. Montoya-Moreno Y, Aguirre-Ramirez N. Periphytic algae assemblage in macrophyte roots in a Colombian tropical wetland. Hidrobiologica. 2008;18(3):189-98.
  36. Mora D, Carmona J, Cantoral-Uriza EA. Epilithic diatoms in the upper Laja River Basin, Guanajuato, Mexico. Rev Mex Biodivers. 2015;86(4):1024-40.
  37. Mora D, Carmona J, Jahn R, Zimmermann J, Abarca N. Epilithic diatom communities of selected streams from the Lerma-Chapala Basin, Central Mexico, with the description of two new species. PhytoKeys. 2017;88:39-69. https://doi.org/10.3897/phytokeys.88.14612.
  38. Mora Hernandez LD. An integrative approach to epilithic diatom diversity analysis in tropical streams from the Lerma-Chapala Basin, Central Mexico [PhD dissertation]. Berlin: Freie Universitat Berlin; 2017.
  39. Moreno YM, Aguirre N. Dynamics of epiphytic algae assemblage in ayapel flood plain through flood pulse. Rev UDCA Actual Divulg Cient. 2013;16(2):491-500. https://doi.org/10.31910/rudca.v16.n2.2013.923.
  40. Patrick R, Reimer CW. The diatoms of the United States, exclusive of Alaska and Hawaii. Philadelphia: Academy of Natural Sciences of Philadelphia; 1966. 668 p.
  41. Pentecost A, Zhaohui Z. Bryophytes from some travertine-depositing sites in France and the U.K.: relationships with climate and water chemistry. J Bryol. 2002;24(3):233-41. https://doi.org/10.1179/037366802125001402.
  42. Pentecost A. Travertine. Dordrecht: Springer Science Business Media; 2005. 445 p.
  43. Potapova MG, Charles DF. Benthic diatoms in USA rivers: distributions along spatial and environmental gradients. J Biogeogr. 2002;29(2):167-87. https://doi.org/10.1046/j.1365-2699.2002.00668.x.
  44. Quintana Zagaceta CH. [The use of Diatoms as an indicator of changes environmental in sediments from Lake Yanacocha (Cuzco, Peru) during the late Holocene] [Bachelor thesis]. Lima: Universidad Nacional Agraria La Molina; 2021. Spanish.
  45. Reynolds CS. Algae. In: Petts GE, Calow P, editors. River biota: diversity and dynamics. Oxford: Blackwell Science; 1996. p. 257.
  46. Rimet F. Diatoms: an ecoregional indicator of nutrients, organic matter and micropollutants pollution [PhD dissertation]. Grenoble: Universidad de Grenoble; 2012.
  47. Round FE, Crawford RM, Mann DG. The Diatoms: biology and morphology of the genera. Cambridge: Cambridge University Press; 1990. 747 p.
  48. Sabater S. Diatom communities as indicators of environmental stress in the Guadiamar River, S-W. Spain, following a major mine tailings spill. J Appl Phycol. 2000;12:113-24. https://doi.org/10.1023/A:1008197411815.
  49. Salinas Camarillo VH. Las diatomeas indicadoras de la calidad ecologica en rios de la Cuenca de Mexico [Thesis]. Mexico City: Universidad Nacional Autonoma de Mexico; 2018.
  50. Sanz Rubio E, Hoyos M, Canaveras JC, Sanchez Moral S, Calvo JP. Sedimentological characterization of Upper Miocene-Pliocene fluviolacustrine and tuffaceous systems of the Calatayud Basin (Zaragoza). Geogaceta. 1996;2(2):277-80.
  51. Segura-Garcia V, Almanza Alvarez JS, Ponce-Saavedra J. Diversity of epilithic diatoms communities related to physico-chemical parameters in the headwaters of the Zinapecuaro River, Mexico. Hidrobiologica. 2016;26(2):187-202.
  52. Soininen J, Paavola R, Muotka T. Benthic diatom communities in boreal streams: community structure in relation to environmental and spatial gradients. Ecography. 2004;27(3):330-42. https://doi.org/10.1111/j.0906-7590.2004.03749.x.
  53. Tavera R, Elster J, Marvan P. Diatoms from Papaloapan basin communities, Mexico. Algol Stud. 1994;74:35-65. https://doi.org/10.1127/algol_stud/74/1994/35.
  54. Van Dam H, Mertens A, Sinkeldam J. A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Neth J Aquat Ecol. 1994;28(1):117-33. https://doi.org/10.1007/BF02334251.
  55. Vazquez G, Ake-Castillo JA, Favila ME. Algal assemblages and their relationship with water quality in tropical Mexican streams with different land uses. Hydrobiologia. 2011;667:173-89. https://doi.org/10.1007/s10750-011-0633-4.
  56. Velazquez Bucio M, Israde Alcantara I. Uso de las diatomeas para la evaluacion de la calidad del agua del rio Turbio. Paper presented at: Ecologia y Manejo de Ecosistemas Acuaticos en Michoacan; 2006 Nov 26-30; Morelia, Mexico. Morelia: SCME, 2006. p.46. 2007.
  57. Wetzel RG. Limnology: lake and river ecosystems. 3rd ed. San Diego: Academic Press; 2001.
  58. Wyatt R, Odrzykoski IJ. On the origins of the allopolyploid moss Plagiomnium cuspidatum. Bryologist. 1998;101(2):263-71. https://doi.org/10.2307/3244203.