DOI QR코드

DOI QR Code

C2C12 근아세포의 근육 형성에 대한 진동 부하 효과

Effects of In Vitro Vibration Loading on Myogenesis of C2C12 Myoblasts

  • Yong Chan Jung (Department of Biomedical Engineering, Yonsei University) ;
  • Gayoung Kim (Department of Biomedical Engineering, Yonsei University) ;
  • Eunyeong Moon (Department of Biomedical Engineering, Yonsei University) ;
  • Hanbyul Cho (Department of Biomedical Engineering, Yonsei University) ;
  • Chi Hyun Kim (Department of Biomedical Engineering, Yonsei University)
  • 투고 : 2024.08.07
  • 심사 : 2024.08.21
  • 발행 : 2024.08.31

초록

Muscle disorders arise from genetic factors or other external environmental influences, leading to muscle loss and decreased strength. Muscle disease is closely related to age, and with the global progression of aging, there is increasing interest in the prevention and treatment of muscle diseases among the elderly population. Muscles release various substances during contraction and relaxation when exercising, and growth and differentiation are enhanced. Similar effects can be achieved by vibration stimulations of specific frequencies. To examine the response of muscle cells to vibration stimuli, an in vitro vibration device capable of setting various frequencies and amplitudes was developed for use with a 6-well plate. In vitro vibrational stimulation was applied to C2C12 myoblasts to quantify the growth and differentiation of myoblasts, as well as cell apoptosis. 10 Hz vibrational stimuli resulted in increases in ERK signaling and decreases in cell death. Moreover, an increase in the number of exposures to vibration promoted cellular differentiation. In conclusion, 10 Hz vibrational stimuli have the potential to increase muscle growth and differentiation and reduce apoptosis in C2C12 myoblasts.

키워드

참고문헌

  1. Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet. 2019;393(10191):2636-46. https://doi.org/10.1016/S0140-6736(19)31138-9
  2. Evans WJ. What is sarcopenia? J Gerontol A Biol Sci Med Sci. 1995;50 Spec No:5-8. https://doi.org/10.1093/gerona/50A.Special_Issue.5
  3. Santilli V, Bernetti A, Mangone M, Paoloni M. Clinical definition of sarcopenia. Clin Cases Miner Bone Metab. 2014;11(3):177-80.
  4. Kyle UG, Genton L, Hans D, Karsegard L, Slosman DO, Pichard C. Age-related differences in fat-free mass, skeletal muscle, body cell mass and fat mass between 18 and 94 years. Eur J Clin Nutr. 2001;55(8):663-72. https://doi.org/10.1038/sj.ejcn.1601198
  5. Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol Rev. 2019;99(1):427-511. https://doi.org/10.1152/physrev.00061.2017
  6. Sehl ME, Yates FE. Kinetics of human aging: I. Rates of senescence between ages 30 and 70 years in healthy people. J Gerontol A Biol Sci Med Sci. 2001;56(5):B198-208. https://doi.org/10.1093/gerona/56.5.B198
  7. Ji S, Jung HW, Baek JY, Jang IY, Lee E. Sarcopenia as the Mobility Phenotype of Aging: Clinical Implications. J Bone Metab. 2024;31(1):1-12.
  8. Lo JH, U KP, Yiu T, Ong MT, Lee WY. Sarcopenia: Current treatments and new regenerative therapeutic approaches. J Orthop Translat. 2020;23:38-52. https://doi.org/10.1016/j.jot.2020.04.002
  9. Eyckmans J, Boudou T, Yu X, Chen CS. A hitchhiker's guide to mechanobiology. Dev Cell. 2011;21(1):35-47. https://doi.org/10.1016/j.devcel.2011.06.015
  10. Iqbal J, Zaidi M. Molecular regulation of mechanotransduction. Biochem Biophys Res Commun. 2005;328(3):751-5. https://doi.org/10.1016/j.bbrc.2004.12.087
  11. Aguayo D, Mueller SM, Boutellier U, Auer M, Jung HH, Fluck M, Toigo M. One bout of vibration exercise with vascular occlusion activates satellite cells. Exp Physiol. 2016;101(2):295-307. https://doi.org/10.1113/EP085330
  12. Lin YH, Chou LY, Chou HC, Chen CH, Kang L, Cheng TL, Wang CZ. The Essential Role of Stathmin in Myoblast C2C12 for Vertical Vibration-Induced Myotube Formation. Biomolecules. 2021;11(11).
  13. Usuki F, Fujimura M, Nakamura A, Nakano J, Okita M, Higuchi I. Local Vibration Stimuli Induce Mechanical Stress-Induced Factors and Facilitate Recovery From Immobilization-Induced Oxidative Myofiber Atrophy in Rats. Front Physiol. 2019;10:759.
  14. Wang CZ, Wang GJ, Ho ML, Wang YH, Yeh ML, Chen CH. Low-magnitude vertical vibration enhances myotube formation in C2C12 myoblasts. J Appl Physiol (1985). 2010;109(3):840-8. https://doi.org/10.1152/japplphysiol.00115.2010
  15. Kim K, Monroe JC, Gavin TP, Roseguini BT. Skeletal muscle adaptations to heat therapy. J Appl Physiol (1985). 2020;128(6):1635-42. https://doi.org/10.1152/japplphysiol.00061.2020
  16. McGorm H, Roberts LA, Coombes JS, Peake JM. Turning Up the Heat: An Evaluation of the Evidence for Heating to Promote Exercise Recovery, Muscle Rehabilitation and Adaptation. Sports Med. 2018;48(6):1311-28. https://doi.org/10.1007/s40279-018-0876-6
  17. Gunes S, Buyukakilli B, Yaman S, Turkseven CH, Balli E, Cimen B, Bayrak G, Celikcan HD. Effects of extremely low-frequency electromagnetic field exposure on the skeletal muscle functions in rats. Toxicol Ind Health. 2020;36(2):119-31. https://doi.org/10.1177/0748233720912061
  18. Morabito C, Rovetta F, Bizzarri M, Mazzoleni G, Fano G, Mariggio MA. Modulation of redox status and calcium handling by extremely low frequency electromagnetic fields in C2C12 muscle cells: A real-time, single-cell approach. Free Radic Biol Med. 2010;48(4):579-89.
  19. Baskin RJ, Paolini PJ. Volume change and pressure development in muscle during contraction. Am J Physiol. 1967;213(4):1025-30. https://doi.org/10.1152/ajplegacy.1967.213.4.1025
  20. Hill AV. The pressure developed in muscle during contraction. J Physiol. 1948;107(4):518-26. https://doi.org/10.1113/jphysiol.1948.sp004296
  21. Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol. 2017;72:19-32. https://doi.org/10.1016/j.semcdb.2017.11.011
  22. Zammit PS, Relaix F, Nagata Y, Ruiz AP, Collins CA, Partridge TA, Beauchamp JR. Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci. 2006;119(Pt 9):1824-32. https://doi.org/10.1242/jcs.02908
  23. Oh ES, Seo YK, Yoon HH, Cho H, Yoon MY, Park JK. Effects of sub-sonic vibration on the proliferation and maturation of 3T3-L1 cells. Life Sci. 2011;88(3-4):169-77. https://doi.org/10.1016/j.lfs.2010.11.007
  24. Reusch HP, Chan G, Ives HE, Nemenoff RA. Activation of JNK/SAPK and ERK by mechanical strain in vascular smooth muscle cells depends on extracellular matrix composition. Biochem Biophys Res Commun. 1997;237(2):239-44. https://doi.org/10.1006/bbrc.1997.7121
  25. Lavoie H, Gagnon J, Therrien M. ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol. 2020;21(10):607-32. https://doi.org/10.1038/s41580-020-0255-7
  26. Mebratu Y, Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle. 2009;8(8):1168-75. https://doi.org/10.4161/cc.8.8.8147
  27. Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49-63. https://doi.org/10.1038/nrm3722
  28. Raisova M, Hossini AM, Eberle J, Riebeling C, Wieder T, Sturm I, Daniel PT, Orfanos CE, Geilen CC. The Bax/Bcl2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J Invest Dermatol. 2001;117(2):333-40. https://doi.org/10.1046/j.0022-202x.2001.01409.x
  29. Boise LH, Gottschalk AR, Quintans J, Thompson CB. Bcl-2 and Bcl-2-related proteins in apoptosis regulation. Curr Top Microbiol Immunol. 1995;200:107-21.
  30. Velica P, Bunce CM. A quick, simple and unbiased method to quantify C2C12 myogenic differentiation. Muscle Nerve. 2011;44(3):366-70. https://doi.org/10.1002/mus.22056
  31. Lee W, Eo SR, Choi JH, Kim YM, Nam MH, Seo YK. The Osteogenic Differentiation of Human Dental Pulp Stem Cells through G0/G1 Arrest and the p-ERK/Runx-2 Pathway by Sonic Vibration. Int J Mol Sci. 2021;22(18).
  32. Sun T, Yan Z, Cai J, Shao X, Wang D, Ding Y, Feng Y, Yang J, Luo E, Feng X, Jing D. Effects of mechanical vibration on cell morphology, proliferation, apoptosis, and cytokine expression/secretion in osteocyte-like MLO-Y4 cells exposed to high glucose. Cell Biol Int. 2020;44(1):216-28. https://doi.org/10.1002/cbin.11221
  33. Cagnol S, Chambard JC. ERK and cell death: mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence. Febs j. 2010;277(1):2-21. https://doi.org/10.1111/j.1742-4658.2009.07366.x
  34. Melo-Lima S, Lopes MC, Mollinedo F. ERK1/2 acts as a switch between necrotic and apoptotic cell death in ether phospholipid edelfosine-treated glioblastoma cells. Pharmacol Res. 2015;95-96:2-11. https://doi.org/10.1016/j.phrs.2015.02.007
  35. Zhuang S, Schnellmann RG. A death-promoting role for extracellular signal-regulated kinase. J Pharmacol Exp Ther. 2006;319(3):991-7. https://doi.org/10.1124/jpet.106.107367
  36. Ebrahimi SM, Asadi J, Fattahian M, Jafari SM, Ghanadian M. Persianolide-A, an eudesmanolide-type sesquiterpene lactone from Artemisia kopetdaghensis, induces apoptosis by regulating ERK signaling pathways. Res Pharm Sci. 2024;19(3):328-37. https://doi.org/10.4103/RPS.RPS_175_23
  37. McClure MJ, Clark NM, Schwartz Z, Boyan BD. Platelet-rich plasma and alignment enhance myogenin via ERK mitogen activated protein kinase signaling. Biomed Mater. 2018;13(5):055009.
  38. Ohashi K, Nagata Y, Wada E, Zammit PS, Shiozuka M, Matsuda R. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade. Exp Cell Res. 2015;333(2):228-37.
  39. Li J, Johnson SE. ERK2 is required for efficient terminal differentiation of skeletal myoblasts. Biochem Biophys Res Commun. 2006;345(4):1425-33. https://doi.org/10.1016/j.bbrc.2006.05.051
  40. Kurtzeborn K, Kwon HN, Kuure S. MAPK/ERK Signaling in Regulation of Renal Differentiation. Int J Mol Sci. 2019;20(7).