DOI QR코드

DOI QR Code

Study on the Effects of Stratification and Sediment Organic Matter Characteristics on Methane Production in Asan Lake

아산호의 성층과 퇴적층 유기물 특성이 메탄 발생에 미치는 영향에 관한 연구

  • Sun Ryeol Lee (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Haeseong Oh (Department of Environment and Energy, Sejong University) ;
  • Jung Hyun Choi (Department of Environmental Science and Engineering, Ewha Womans University)
  • 이선렬 (이화여자대학교 환경공학과) ;
  • 오해성 (세종대학교 환경에너지융합학과) ;
  • 최정현 (이화여자대학교 환경공학과)
  • Received : 2024.07.10
  • Accepted : 2024.08.21
  • Published : 2024.09.30

Abstract

Lakes are one of major sources of methane gas due to anaerobic decomposition of organic matter in sediments. Since methane released from lakes is a greenhouse gas, it is necessary to investigate factors affecting methane production of lakes. This study conducted field and incubation experiments in Lake Asan in August and October to determine effects of thermal stratification and sediment organic matter characteristics on methane production. Field experiments measured temperature and dissolved oxygen to determine the formation of thermal stratification of lakes. Methane and organic matter characteristics were analyzed using gas chromatography, Total Organic Carbon (TOC) analyzers, and fluorescence spectroscopy. Incubation experiments under anaerobic conditions used sediment and water samples from the same site. Field results showed higher methane fluxes in August and increased Dissolved Organic Carbon (DOC) concentration closer to Asan Bay seawall. Elevated methane fluxes and DOC concentration resulted from intensified anaerobic decomposition formed by thermal stratification. Incubation results indicated that sediment organic matter characteristics influenced methane flux between sites. Statistical analysis revealed that thermal stratification could be a primary factor affecting methane production of lakes. Characteristics of sediment organic matter with respect to quantity and quality could be factors influencing methane production of lakes. Results of this study can serve as fundamental data for predicting methane emissions from lakes due to climate change and for mitigating lake's contributions to global warming.

Keywords

Acknowledgement

이 논문은 2018년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(2018R1A6A1A08025520)

References

  1. Bastviken, D., Cole, J. J., Pace, M. L., and Van de Bogert, M. C. (2008). Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4 emissions, Journal of Geophysical Research: Biogeosciences, 113(G2). https://doi.org/10.1029/2007JG000608
  2. Berberich, M. E., Beaulieu, J. J., Hamilton, T. L., Waldo, S., and Buffam, I. (2020). Spatial variability of sediment methane production and methanogen communities within a eutrophic reservoir: Importance of organic matter source and quantity, Limnology and Oceanography, 65(6), 1336-1358.
  3. Bertolet, B. L., Koepfli, C., and Jones, S. E. (2022). Lake sediment methane responses to organic matter are related to microbial community composition in experimental microcosms, Frontiers in Environmental Science, 10, 834829. https://doi.org/10.3389/fenvs.2022.834829
  4. Cho, H. G., Kim, S. O., Lee, Y. J., Ahn, S. J., and Yi, H. I. (2014). Sediment provenance of Southeastern Yellow Sea mud using principal component analysis, Journal of the Mineralogical Society of Korea, 27(3), 107-114. [Korean Literature] https://doi.org/10.9727/JMSK.2014.27.3.107.
  5. Choi, J, H. and Park, S. S. (2005). Application of numerical model for the porediction of vertical profiles of electron acceptors based on degradation of organic matter in benthic sediments, Journal of Korea Society of Environmental Engineers, 27(2), 151-157. [Korean Literature]
  6. Choi, N, E., Lee, Y, K., and Hur, J. (2022). Dissolved Organic Matter (DOM) leaching from microplastics under UV-Irradiation and its fluorescence properties: Comparision with natural particles, Journal of Korean Society on Water Environment, 38(2), 72-81. [Korean Literature] https://doi.org/10.15681/KSWE.2022.38.2.82
  7. Coble, P. G. (2007). Marine optical biogeochemistry: The chemistry of ocean color, Chemical Reviews, 107(2), 402-418. https://doi.org/10.1021/cr050350+
  8. Coble, P. G., Del Castillo, C. E., and Avril, B. (1998). Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon, Deep Sea Research Part II: Topical Studies in Oceanography, 45(10-11), 2195-2223. https://doi.org/10.1016/S0967-0645(98)00068-X
  9. D'Ambrosio, S. L. and Harrison, J. A. (2022). Measuring CH4 fluxes from lake and reservoir sediments: Methodologies and needs, Frontiers in Environmental Science, 10, 850070. https://doi.org/10.3389/fenvs.2022.850070
  10. Dadi, T., Rinke, K., and Friese, K. (2020). Trajectories of sediment-water interactions in reservoirs as a result of temperature and oxygen conditions, Water, 12(4), 1065. https://doi.org/10.3390/w12041065
  11. DelSontro, T., Beaulieu, J. J., and Downing, J. A. (2018). Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change, Limnology and Oceanography Letters, 3(3), 64-75. https://doi.org/10.1002/lol2.10073.
  12. DelSontro, T., McGinnis, D. F., Sobek, S., Ostrovsky, I., and Wehrli, B. (2010). Extreme methane emissions from a Swiss hydropower reservoir: Contribution from bubbling sediments, Environmental Science and Technology, 44(7), 2419-2425. https://doi.org/10.1021/es9031369
  13. Gao, J., Xie, D., Cao, L., Zhao, Z., Zhou, J., Liao, W., Xu, X., Wang, Q., and He, F. (2024). The ratio but not individual of fragile to refractory DOM affects greenhouse gases release in different trophic level lakes, Journal of Environmental Management, 351, 119914. https://doi.org/10.1016/j.jenvman.2023.119914
  14. Gruca-Rokosz, R. and Ciesla, M. (2021). Sediment methane production within eutrophic reservoirs: The importance of sedimenting organic matter, The Science of the Total Environment, 799, 149219. https://doi.org/10.1016/j.scitotenv.2021.149219
  15. Gudasz, C., Bastviken, D., Steger, K., Premke, K., Sobek, S., and Tranvik, L. J. (2010). Temperature-controlled organic carbon mineralization in lake sediments, Nature, 466(7305), 478-481. https://doi.org/10.1038/nature09186
  16. Gyeonggi Province Institute of Health and Environment. (2024). 2023 Gyeonggi province water quality assessment report. 71-6410578-000052-10, Gyeonggi Province Institute of Health and Environment, 6. [Korean Literature]
  17. Hayes, N. M., Deemer, B. R., Corman, J. R., Razavi, N. R., and Strock, K. E. (2017). Key differences between lakes and reservoirs modify climate signals: A case for a new conceptual model, Limnology and Oceanography Letters, 2(2), 47-62. https://doi.org/10.1002/lol2.10036
  18. He, J., Wu, X., Zhi, G., Yang, Y., Wu, L., Zhang, Y., Zheng, B., Qadeer, A., Zheng, J., Deng, W., Zhou, H., and Shao, Z. (2022). Fluorescence characteristics of DOM and its influence on water quality of rivers and lakes in the Dianchi Lake basin, Ecological Indicators, 142, 109088. https://doi.org/10.1016/j.ecolind.2022.109088
  19. Hershey, A. E., Northington, R. M., and Whalen, S. C. (2014). Substrate limitation of sediment methane flux, methane oxidation and use of stable isotopes for assessing methanogenesis pathways in a small arctic lake, Biogeochemistry, 117, 325-336. http://www.jstor.org/stable/24716861.
  20. Hongxia, Y., Jinxu, G., Wei, L., and Keyan, T. (2014). Investigating the composition of dissolved organic matter in natural water in rare earth mine using EEM-PARAFAC analysis, Environmental Science: Processes and Impacts, 16(11), 2527-2535. https://doi.org/10.1039/c4em00380b
  21. Horppila, J., Keskinen, S., Nurmesniemi, M., Nurminen, L., Pippingskold, E., Rajala, S., Sainio, K., and Estlander, S. (2023). Factors behind the threshold-like changes in lake ecosystems along a water colour gradient: The effects of dissolved organic carbon and iron on euphotic depth, mixing depth and phytoplankton biomass, Freshwater Biology, 68(6), 1031-1040. https://doi.org/10.1111/fwb.14083
  22. Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J. M., and Parlanti, E. (2009). Properties of fluorescent dissolved organic matter in the Gironde Estuary, Organic Geochemistry, 40(6), 706-719. https://doi.org/10.1016/j.orggeochem.2009.03.002
  23. Hur, J. and Park, M. H. (2007). Fluorescence properties of size fractions of dissolved organic matter originated from different sources, Journal of Korean Society on Water Environment, 23(4), 482-489. [Korean Literature]
  24. Hur, J., Kim, M. K., and Park, S. W. (2007). Analyses of synchronous fluorescence spectra of dissolved organic matter for tracing upstream pollution sources in rivers, Journal of Korean Society of Environmental Engineers, 29(3), 317-324. [Korean Literature]
  25. Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021 - The physical science basis: Working group I contribution to the sixth assessment report of the intergovernmental panel on climate change, Cambridge: Cambridge University Press.
  26. Ishii, S. K. and Boyer, T. H. (2012). Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: A critical review, Environmental Science and Technology, 46(4), 2006-2017. https://doi.org/10.1021/es2043504
  27. Jeong, Y. H., Cho, M. K., Lee, D. G., Doo, S. M., Choi, H. S., and Yang, J. S. (2016). Nutrient budget and dam effluence in Asan Bay, Journal of the Korean Society of Marine Environment and Safety, 22(5), 468-482. [Korean Literature] https://doi.org/10.7837/kosomes.2016.22.5.468
  28. Kankaala, P., Huotari, J., Peltomaa, E., Saloranta, T., and Ojala, A. (2006). Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake, Limnology and Oceanography, 51(2), 1195-1204.
  29. Ki, B. M., Lim, B. M., Na, E. H., and Choi, J. H. (2010). A study on the nutrient release characteristics from sediments in the Asan reservoir, Journal of Korean Society of Environmental Engineers, 32(1), 1-8. [Korean Literature]
  30. Kim, B, Y., Jung, K, Y., and Hur, J. (2023). Prediction of coagulation/flocculation treatment efficiency of Dissolved Oraganic Matter (DOM) using multiple DOM characteristics, Journal of Korean Society on Water Environment, 39(6), 465-474. [Korean Literature] https://doi.org/10.15681/KSWE.2023.39.6.465
  31. Kim, C, S., Son, S, G., Lee, J, H., and Oh, K, H. (2000). Community structure, productivity, and nutrient uptake of the vascular plants in the wetlands of the Asan-Lake, Journal of Ecology and Environment, 23(3), 201-209. [Korean Literature]
  32. Kim, H. S. (2020). Analysis of popular YouTube video content using data mining, Journal of Digital Contents Society, 21(4), 673-681. [Korean Literature] https://doi.org/10.9728/dcs.2020.21.4.673
  33. Kim, K. H., Kim, S. H., Jin, D. R., Huh, I, A., and Hyun, J. H. (2017). A study of the measurement method for benthic nutrient flux in freshwater sediment, Journal of Korean Society of Environmental Engineers, 39(5), 288-302. [Korean Literature] https://doi.org/10.4491/KSEE.2017.39.11.613
  34. Kim, S. and An, S. (2022). A Study on the effect of the development of anaerobic respiration processes in the sediment with the water-column stratification and hypoxia and its influence on methane at Dangdong Bay in Jinhae, Korea, Ocean and Polar Research, 44(1), 1-11. [Korean Literature] https://doi.org/10.4217/OPR.2022005
  35. Kim, S. M., Jang, T. I., Kang, M. S., Im, S. J., and Park, S. W. (2014). GIS-based lake sediment budget estimation taking into consideration land use change in an urbanizing catchment area, Environmental Earth Sciences, 71(5), 2155-2165. [Korean Literature] https://doi.org/10.1007/s12665-013-2621-7
  36. Kim, Y. G. and Shin, Y. K. (2002). Ecological studies on the Asan reservoir. 2. Phytoplankton community structure, Korean Journal of Ecology and Environment, 35(3), 187-197. [Korean Literature]
  37. Kirillin, G. and Shatwell, T. (2016). Generalized scaling of seasonal thermal stratification in lakes, Earth-Science Reviews, 161, 179-190. https://doi.org/10.1016/j.earscirev.2016.08.008
  38. Lee, D. H., Kang. E. T., Joo. J. C., Go. H. W., Ahn. C. M., Bae. Y. H., and Song. K. D. (2022). Water quality analysis and Chl-a prediction of 15 large-scale freshwater lakes in Korea by multivariate statistical analysis, Journal of Korean Society of Environmental Engineers, 44(12), 589-602. [Korean Literature] https://doi.org/10.4491/KSEE.2022.44.12.589
  39. Lee, G. C., Park, Y. J., Kang, K. H., Jung, M. O, Ryu, D. H., Jung, S. S., and Lee, W. (2021). Characteristics of oraganic matters in influents and effluents of sewage treatment plants in Gyeongsanbuk-do, Journal of Korean Society of Environmental Engineers, 43(5), 367-376. [Korean Literature] https://doi.org/10.4491/KSEE.2022.43.5.367
  40. Lee, M. H., Lee, S. Y., and Hur, J. (2024). Estimating the relative contribution of organic phosphorus to organic matters with various sources flowing into a reservoir via fluorescence spectroscopy, Journal of Korean Society on Water Environment, 40(2), 67-78. [Korean Literature] https://doi.org/10.15681/KSWE.2024.40.2.67
  41. Lee, Y, K. and Hur, J. (2022). Advanced analytical techniques for dissolved organic matter and their applications in natural and engineered water treatment systems, Journal of Korean Society on Water Environment, 38(1), 31-42. [Korean Literature] https://doi.org/10.15681/KSWE.2022.38.1.31
  42. Lee, Y. M., Lee, J. Y., Kim, M. K., Yang, H., Lee, J. E., Son, Y., Kho, Y., Choi, K., and Zoh, K. D. (2020). Concentration and distribution of per-and polyfluoroalkyl substances (PFAS) in the Asan Lake area of South Korea, Journal of Hazardous Materials, 381, 120909. https://doi.org/10.1016/j.jhazmat.2019.120909
  43. Li, S., Lu, L., Wu, Y., Zhao, Z., Huang, C., Huang, T., Yang, H., Ma, X., and Jiang, Q. (2021). Investigation on depth-dependent properties and benthic effluxes of dissolved organic matter (DOM) in pore water from plateau lake sediments, Ecological Indicators, 125, 107500. https://doi.org/10.1016/j.ecolind.2021.107500
  44. Li, W., Li, X., Han, C., Gao, L., Wu, H., and Li, M. (2023). A new view into three-dimensional excitation-emission matrix fluorescence spectroscopy for dissolved organic matter, Science of the Total Environment, 855, 158963. https://doi.org/10.1016/j.scitotenv.2022.158963
  45. Lim, B. M., Ki, B. M., and Choi, J. H. (2009). A study on the biogeochemistry of the sediments in the Han river estuary, Journal of Korean Society of Environmental Engineers, 31(10), 839-844. [Korean Literature]
  46. Ma, S., Yang, M., Wang, F., Luo, C., Xu, P., Ma, J., and Chen, X. (2024). Autochthonous organic matter input in reservoirs: Limited methane oxidation in sediments fails to suppress methane emission, Science of The Total Environment, 174122. https://doi.org/10.1016/j.scitotenv.2024.174122
  47. Mendoza-Pascual, M. U., Itoh, M., Aguilar, J. I., Padilla, K. S. A. R., Papa, R. D. S., and Okuda, N. (2021). Controlling factors of methane in tropical lakes of different depths, Journal of Geophysical Research: Biogeosciences, 126(4), https://doi.org/e2020JG005828.
  48. Oh, H. S. and Choi, J. H. (2022). Changes in the dissolved organic matter characteristics released from sediment according to precipitation in the Namhan River with weirs: A laboratory experiment, International Journal of Environmental Research and Public Health, 19(9), 4958. https://doi.org/10.3390/ijerph19094958
  49. Oh, H. S., Huh, I. A., and Choi, J. H. (2018). Fluorescence analysis of dissolved organic matter released from sediment of Yeongsan River, Journal of Korean Society of Environmental Engineers, 40(9), 350-358. [Korean Literature] https://doi.org/10.4491/KSEE.2018.40.9.350
  50. Oh, J. and Cho, Y. (2007). Impact of nutrient release from sediment on water quality in small reservoirs, Journal of Korean Society of Environmental Engineers, 29(11), 1217-1222. [Korean Literature]
  51. Pajala, G., Sawakuchi, H. O., Rudberg, D., Schenk, J., Sieczko, A., Galfalk, M., Seekell, D., Sundgren, I., Duc, N. T., Karlsson, J., and Bastviken, D. (2023). The effects of water column dissolved oxygen concentrations on lake methane emissions-Results from a whole-lake oxygenation experiment, Journal of Geophysical Research: Biogeosciences, 128(11), e2022JG007185. https://doi.org/10.1029/2022JG007185
  52. Park, J. K., Kim, E. S., Kim, K. T., Cho, S. R., Song, T. Y., Yoo, J. K., Kim, S. S., and Park, Y. C. (2009). Characteristics in organic carbon distribution in the Seamangeum area during the construction of artificial sea dike, Korea, Journal of the Korean Society for Marine Environment & Energy, 12(2), 75-83. [Korean Literature]
  53. Parlanti, E., Worz, K., Geoffroy, L., and Lamotte, M. (2000). Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs, Org anic g eochemistry, 31(12), 1765-1781. https://doi.org/10.1016/S0146-6380(00)00124-8
  54. Sciscenko, I., Arques, A., Mico, P., Mora, M., and Garcia-Ballesteros, S. (2022). Emerging applications of EEM-PARAFAC for water treatment: A concise review, Chemical Engineering Journal Advances, 10, 100286. https://doi.org/10.1016/j.ceja.2022.100286
  55. Shin, Y. K. and Jun, S. H. (2002). Ecological studies on the Asan Reservoir. 1. Physicochemical characteristics and trophic status, Korean Society of Limnology, 35(3), 181-186. [Korean Literature]
  56. Soued, C. and Prairie, Y. T. (2021). Changing sources and processes sustaining surface CO2 and CH4 fluxes along a tropical river to reservoir system, Biogeosciences, 18(4), 1333-1350. https://doi.org/10.5194/bg-18-1333-2021
  57. Stedmon, C. A., Markager, S., and Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy, Marine Chemistry, 82(3-4), 239-254. https://doi.org/10.1016/S0304-4203(03)00072-0
  58. Sun, C., Wang, S., Wang, H., Hu, X., Yang, F., Tang, M., Zhang, M., and Zhong, J. (2022). Internal nitrogen and phosphorus loading in a seasonally stratified reservoir: Implications for eutrophication management of deep-water ecosystems, Journal of Environmental Management, 319, 115681. https://doi.org/10.1016/j.jenvman.2022.115681
  59. Vachon, D., Langenegger, T., Donis, D., and McGinnis, D. F. (2019). Influence of water column stratification and mixing patterns on the fate of methane produced in deep sediments of a small eutrophic lake, Limnology and Oceanography, 64(5), 2114-2128. https://doi.org/10.1002/lno.11172
  60. Wen, Z., Shang, Y., Song, K., Liu, G., Hou, J., Lyu, L., Hui, T., Li, S., He, C., Shi, Q., and He, D. (2022). Composition of dissolved organic matter (DOM) in lakes responds to the trophic state and phytoplankton community succession, Water Research, 224, 119073. https://doi.org/10.1016/j.watres.2022.119073
  61. West, W. E., Creamer, K. P., and Jones, S. E. (2016). Productivity and depth regulate lake contributions to atmospheric methane, Limnology and Oceanography, 61(S1), S51-S61. https://doi.org/10.1002/lno.10247
  62. Yao, B., Hu, C., and Liu, Q. (2016). Fluorescent components and spatial patterns of chromophoric dissolved organic matters in Lake Taihu, a large shallow eutrophic lake in China, Environmental Science and Pollution Research, 23, 23057-23070. https://doi.org/10.1007/s11356-016-7510-7
  63. Yoon, S. M. and Choi, J. H. (2018). Spatial distribution of dissolved organic matter compositions upstream of Ipobo, Journal of Korean Society on Water Environment, 34(4), 399-408. [Korean Literature] https://doi.org/10.15681/KSWE.2018.34.4.399
  64. Yu, H., Song, Y., Tu, X., Du, E., Liu, R., and Peng, J. (2013). Assessing removal efficiency of dissolved organic matter in wastewater treatment using fluorescence excitation emission matrices with parallel factor analysis and second derivative synchronous fluorescence, Bioresource Technology, 144, 595-601. https://doi.org/10.1016/j.biortech.2013.07.025
  65. Zhang, Z., Meng, J., Chen, Z., Zhou, S., Zhang, T., Chen, Z., Liu, Y., and Cui, J. (2023). Response of dissolved organic matter to thermal stratification and environmental indication: The case of Gangnan Reservoir, Science of The Total Environment, 868, 161615. https://doi.org/10.1016/j.scitotenv.2023.161615
  66. Zhao, L., Li, N., Huang, T., Zhang, H., Si, F., Li, K., Qi, Y., Hua, F., and Huang, C. (2022). Effects of artificially induced complete mixing on dissolved organic matter in a stratified source water reservoir, Journal of Environmental Sciences, 111, 130-140. https://doi.org/10.1016/j.jes.2021.03.024