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ABSTRACT

BACKGROUND/OBJECTIVES: Inflammation and ferroptosis are implicated in various diseases 
and lipopolysaccharides (LPS) have been linked with these disorders. Recently, many edible 
insects, such as Gryllus bimaculatus, Protaetia brevitarsis larvae (PB) and Tenebrio molitor larvae, 
have been recommended as alternative foods because they contain lots of nutritional sources. 
In this study, we explored the potential of PB extract in preventing LPS-induced inflammation 
and ferroptosis in Hep3B cells.
MATERIALS/METHODS: PB powder was extracted using 70% ethanol and applied to Hep3B 
cells. Co-treatment with LPS was conducted to induce ferroptosis and inflammation. The anti-
inflammatory and anti-ferroptosis mechanisms of the PB extract were confirmed using Western 
blot, enzyme-linked immunosorbent assay, and real-time polymerase chain reaction analysis.
RESULTS: PB extract effectively prevented LPS-induced cell death and restored LPS-induced 
inflammatory cytokine production, NF-κB signaling, endoplasmic reticulum (ER) stress 
and ferroptosis. Interestingly, PB extract reduced LPS-induced ceramide increase and acid 
sphingomyelinase (ASMase) expression. The use of the ASMase inhibitor, desipramine, 
also demonstrated a reduction in these pathways, highlighting the pivotal role of ASMase in 
inflammation and ferroptosis. Treatment with each inhibitor revealed that ferroptosis causes 
ER stress and that NF-κB and MAP kinase pathways are involved in inflammation.
CONCLUSION: PB emerges as a potential functional food with inhibitory effects on LPS-induced 
inflammation and ferroptosis, making it a promising candidate for nutritional interventions.

Keywords: Edible Insects; ceramide; sphingomyelin phosphodiesterase; ferroptosis; 
inflammation

INTRODUCTION

Edible insects are now emerging as alternative food sources due to their nutritional content, 
including proteins, fats, and minerals [1]. Moreover, the production of edible insects 
results in lower emissions of carbon dioxide, methane, and ammonia compared to raising 
traditional livestock like beef cattle and pigs [2]. Therefore, growing edible insects is 
environmentally friendly. Recent research has been uncovering the potential health benefits 
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of edible insects, indicating a promising future for their utilization. Among the many edible 
insects, Tenebrio molitor larvae has been widely studied and found to prevent hepatic steatosis 
[3], obesity [4], and inflammation [5]. Similarly, Protaetia brevitarsis (PB) has shown promising 
effects on high fat diet-induced obesity [6], oxidative stress-induced hepatotoxicity [7], 
and attenuation of osteoclastogenesis in mouse bone marrow-derived macrophages [8]. 
Therefore, PB also contains various functional compounds with potential advantages against 
several diseases, including obesity, liver toxicity, and osteoporosis.

Lipopolysaccharide (LPS), a major component of gram-negative bacteria, is widely used for 
induction of inflammation. LPS not only activate inflammation by stimulating the Toll-like 
receptor 4 signaling pathway but also stimulates acid sphingomyelinase (ASMase) activity, 
increasing ceramide level [9]. ASMase hydrolyzed sphingomyelin (SM) to generate ceramide 
and phosphocholine [10]. ASMase is known to play an important role in many diseases, 
such as inflammation, tumors, cardiovascular diseases, neurological diseases, respiratory 
diseases, and liver diseases [10]. Studies on ASMase knockout mice have shown attenuated 
tumor necrosis factor (TNF)-α-mediated hepatocellular apoptosis [11], and protection 
against alcohol-induced liver disease [12]. Furthermore, ASMase inhibition has shown 
protection from Cu2+-induced hepatocyte apoptosis [13]. ASMase also plays an important 
role in the activation of Kupffer cells [14,15]. Therefore, ASMase plays an important role in 
hepatocyte death and liver injury and it could be a strong candidate for many liver diseases 
[16]. Recent research has suggested an association between ASMase and ferroptosis [17,18], 
further highlighting its significance in various pathological processes.

Ferroptosis, characterized by iron-dependent cell death, is different from other forms of 
cell death such as apoptosis, necroptosis, and pyroptosis [19]. Its mechanism involves lipid 
peroxidation of unsaturated fatty acids and reduction in the levels of glutathione peroxidase 
4 (GPX4), ultimately leading to iron-dependent cell death [19,20]. The interplay of these 
elements disrupts cellular membrane integrity and function, leading to cell death. Erastin,  
a well-known inducer of ferroptosis, contributes to this process by increasing the generation 
of reactive oxygen species (ROS) [19]. Elevated ROS levels lead to lipid peroxidation, causing 
the depletion of glutathione (GSH), an antioxidant that normally supports GPX4 function. 
As GSH levels decrease, GPX4 is downregulated, removing a key defense mechanism against 
lipid peroxidation [19].

Recently, it has been discovered that many edible insects have antioxidant effects [21-23]. 
However, no studies have been conducted on the potential effects of edible insects, such as 
PB, on ferroptosis. Therefore, we produced PB extract and examined the effects of PB extract 
on the LPS-induced inflammation and ferroptosis.

MATERIALS AND METHODS

Materials
PB larvae were obtained from GreenBugs Co-op. (Sokcho, Korea). LPS, desipramine, 
erastin, SB203580, SP600125, PDTC (Ammonium pyrrolidinedithiocarbamate), 4-PBA 
(Sodium phenylbutyrate), ferrostatin-1, N-acetylcysteine (NAC), and anti-α-tubulin (T9026) 
antibody were obtained from Sigma-Aldrich (St. Louis, MO, USA). Anti-cleaved caspase-3 
(9664), anti-phospho-protein kinase R-like endoplasmic reticulum kinase (PERK) (Thr980) 
(3179), anti-phospho-eukaryotic translation initiation factor 2A (eIF2α) (Ser51) (3597), 
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anti-phospho-SAPK/JNK (Thr183/Tyr185) (9255), anti-phospho-p38 (Thr180/Tyr182) (4511), 
anti-phospho-p65 (Ser536) (3033), anti-soluble carrier family 7 member 11 (Slc7a11) (12691), 
and anti-GPX4 (59735) antibodies were purchased from Cell Signaling Technology (Beverly, 
MA). Anti-mouse horseradish peroxidase (HRP)-conjugated (115-036-003) and anti-rabbit 
HRP-conjugated (111-035-003) antibodies were procured from Jackson Laboratory (Bar 
Harbor, ME, USA).

PB extract
After fasting with glutinous rice flour for 2 days, PB larvae were kept in water at 25°C for 24 h 
for further fasting and washing. Subsequently, they were freeze-dried for 48 h and pulverized 
into a powder form. Then, PB extract was prepared as previously described [24]. Briefly, PB 
larvae powder was extracted using 70% ethanol overnight and filtered using 0.45 µm PVDF 
syringe filter. PB extract in 70% ethanol was diluted to a concentration of 200 mg/mL with 
PBS (1:5–1:20), and the protein concentration of PB extract was confirmed using the Bio-Rad 
Protein Assay dye reagent concentrate (Bio-Rad Laboratories, Hercules, CA, USA). PB extract 
was kept at −20°C for further use.

Hep3B cell, THLE-2 cell culture and treatment
Hep3B cells (hepatocellular carcinoma cell lines from 8-yrs-old black male) were grown in 
Dulbecco’s modified Eagle medium (DMEM) (Welgene, Gyeongsan, Korea), with 10% fetal 
bovine serum (Welgene), 1% penicillin/streptomycin in humidified atmospheres at 37°C 
and subcultured every 3 days. THLE-2 cells (human normal liver cell lines) were grown in 
BEGM Bullet Kit (CC3170; Lonza/Clonetics Corporation, Walkersville, MD, USA). Both cells 
were seeded at 4 × 105 cells/well in a 6-well plate. The cells were pre-treated with 100 µg/mL 
of PB extract (1:2,000 dilution) for 24 h, followed by treatment with 20 µg/mL of LPS or 20 
µM erastin for an additional 24 h to induce inflammation, ferroptosis and cell death. Some 
inhibitors (desipramine (2 µM), 4-PBA (5 mM), SB203580 (10 µM), SP600125 (10 µM), PDTC 
(10 µM), Ferrostatin-1 (1 µM), or NAC (10 mM)) were pre-treated before 24 h and then 20 µg/
mL of LPS or 20 µM erastin was co-treated with inhibitors for another 24 h.

Western blotting
Hep3B and THLE-2 cells were lysed using RIPA buffer (50 mM Tris-HCl, pH 7.5, 150 mM 
NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate, and 0.1% SDS) with protease and 
phosphatase inhibitors (Sigma-Aldrich). The 50 µg proteins were separated on 10% SDS 
polyacrylamide gels and further transferred to nitrocellulose (NC) membranes (Bio-Rad 
Laboratories). Membranes were blocked with blocking buffer (5% bovine serum albumin 
(BSA) in TBST (TBS with 0.1% Tween-20) at 4°C for 1 h. Primary antibodies (1:1,000 
dilutions) and secondary antibodies (1:10,000 dilutions) were sequentially attached at 4°C 
and at room temperature, respectively. Visualized protein bands were analyzed using the 
EzWestLumi Plus Reagent (ATTO Corp., Tokyo, Japan) in the ChemiDoc MP imaging system 
(Bio-Rad Laboratories).

MTT cell viability assay
Hep3B and THLE-2 cells were seeded at 3 × 104 cells/well in a 96-well plate. After pretreatment 
of PB extract or inhibitors for 24 h, cells were co-treated with 20 µg/mL of LPS or 20 µM 
erastin for another 20 h. The cells were incubated for additional 4 h after MTT solution (0.5 
mg/mL final concentration) was added. After removing the media, purple formazan was 
solubilized by adding 200 µL of dimethyl sulfoxide and its concentration was determined on 
the optical density at 540 nm.
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Enzyme-linked immunosorbent assay (ELISA)
TNF-α, interleukin (IL)-1β, and IL-6 levels were measured using TNF-α ELISA kits, IL-1β ELISA 
kits, and IL-6 ELISA kits (Koma Biotech, Seoul, Korea), respectively. Total ceramide levels 
were measured using the Human Ceramide ELISA Kit (MyBioSource, San Diego, CA, USA). 
Malondialdehyde (MDA) and GSH levels were analyzed using Lipid Peroxidation (MDA) Assay 
Kit (Abcam, Cambridge, MA, USA) and GSH Assay Kit (Biovision, Milpitas, CA, USA).

Real-time polymerase chain reaction (PCR)
Total mRNA of Hep3B cells was extracted using RNeasy Mini Kits (Qiagen, Valencia, CA, USA). 
cDNA was synthesized using the Verso cDNA Synthesis Kit (Thermo Scientific, Waltham, MA, 
USA). Quantitative PCR (qPCR) was performed on the CFX Connect Real-Time PCR Detection 
System (Bio-Rad Laboratories). The primers used are listed in Table 1.

Statistical analyses
All experiments were repeated independently in triplicate, and the data were expressed as 
mean ± SEM. Statistical significance was calculated using one- or two-way ANOVA and a 
Tukey’s post hoc test (GraphPad Prism 6.0; GraphPad Software, San Diego, CA, USA).

RESULTS

PB extract prevents LPS-induced inflammation and ferroptosis in Hep3B cells
To determine proper concentration of PB extract, various concentration of PB extract was 
applied to Hep3B cells. Concentrations exceeding 1,500 µg/mL of PB extract induced Hep3B 
cell death (Fig. 1). Given that previous studies have utilized concentrations ranging from 10 
to 300 µg/mL of PB extract [26,27], we decided to use 100 µg/mL of PB extract. Some studies 
have demonstrated that LPS can induce both inflammation and ferroptosis [28]. Therefore, 
we examined the effects of PB extracts on LPS-induced inflammation and ferroptosis. We 
co-treated 20 µg/mL LPS with 100 µg/mL of PB extract. PB extract reduced LPS-induced 
inflammatory cytokine production, such as TNF-α, IL-1β, and IL-6 (Fig. 2A-C), indicating that 
PB extract prevents LPS-induced inflammatory cytokine production. In addition, PB extract 
mitigated LPS-induced cell death (Fig. 2D) and restored GSH levels (Fig. 2E). PB extract also 
reduced LPS-induced MDA levels (Fig. 2F). To further understand the mechanism, we examined 
endoplasmic reticulum (ER) stress (phosphorylation of PERK, eif2α), MAP kinase signaling 
(phosphorylation of p38, JNK), NF-κB (p65 phosphorylation) and ferroptosis markers (Slc7a11, 
GPX4). LPS treatment increased the phosphorylation of PERK, eif2α, p38, JNK, p65 but reduced 
the expression of Slc7a11 and GPX4 (Fig. 2G). PB extract restored these levels (Fig. 2G), meaning 
that PB extract mitigated ER stress, MAP kinase signaling, inflammation and ferroptosis.
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Table 1. Primers used for real-time polymerase chain reaction
Gene Primer sequences References
SMPD1 (ASMase) F: 5′-TGCCAGGTTACATCGCATAG-3′

R: 5′-AGGTTGATGGCGGTGAATAG-3′
SMPD2 (NSMase1) F: 5′-CATGGTGACTGGTTCAGTGG-3′

R: 5′-TTGTATTCGGCATGGAGATG-3′
SMPD3 (NSMase2) F: 5′-GAGCAGCAACACTCCCTGTT-3′

R: 5′-CGTTCGTGTCCAGCAGAGTA-3′
GAPDH F: 5′-ACACCCACTCCTCCACCTTT-3′ [25]

R: 5′-TGCTGTAGCCAAATTCGTTG-3′
SMPD1, sphingomyelin phosphodiesterase 1; ASMase, acid sphingomyelinase; SMPD2, sphingomyelin 
phosphodiesterase 2; NSMase1, neutral sphingomyelinase 1; SMPD3, sphingomyelin phosphodiesterase 3; 
NSMase2, neutral sphingomyelinase 2; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.



PB extract reduces LPS-induced acid SM expression in Hep3B cells
In consideration that LPS may affect ASMase [29], we examined ASMase expression in 
LPS-treated Hep3B cells. ASMase expression increased approximately 6-fold in LPS-treated 
Hep3B cells, but neither neutral sphingomyelinase (NSMase)1 nor 2 was affected (Fig. 3A). 
PB extract reduced LPS-induced ASMase expression (Fig. 3B), and ceramide levels (Fig. 3C).

To further understand whether ASMase regulates inflammation and ferroptosis, we co-treated 
desipramine, an ASMase inhibitor [29], with LPS. Desipramine not only reduced LPS-induced 
inflammatory cytokine production (TNF-α, IL-1β, and IL-6) (Fig. 4A-C), but also restored cell 
viability, GSH levels, and MDA levels (Fig. 4D-F). To understand the mechanism, ER stress, 
nuclear factor (NF)-κB, MAP kinase and ferroptosis signaling were examined. Desipramine 
treatment partially reduced LPS-induced phosphorylation of PERK, eif2α (ER stress), p38, 
JNK (MAP kinase), NF-κB p65 and it also restored the levels of Slc7a11, GPX4 (ferroptosis 
signaling) (Fig. 4G).

PB extract and desipramine reduce erastin-induced ferroptosis and cell death
Erastin can induce ferroptosis by acting as a Na+ independent cystine/glutamate antiporter 
and it also increases ASMase activity, leading to ceramide generation [17]. To further 
confirm whether PB extract and ASMase inhibitor (desipramine) reduce erastin-induced 
ferroptosis, we co-treated PB extract or desipramine with erastin. Erastin treatment reduced 
both Slc7a11 and GPX4 levels, but PB extract and desipramine recovered these protein levels 
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and 4 × 105 cells/well in a 6-well plate. They were treated with various concentrations of PB extract for 48 h. (A) 
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well in a 6-well plate. They were treated with PB extract (100 µg/mL) for 24 h, followed by 20 µg/mL LPS for another 24 h. TNF-α (A), IL-1β (B), and IL-6 (C) in cell 
culture media were measured using commercial enzyme-linked immunosorbent assay kits (n = 4). (D) MTT cell viability assay, (E) GSH levels, and (F) MDA levels 
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were performed in triplicate. 
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(Fig. 5A). Similarly, erastin reduced GSH levels and increased MDA levels, but PB extract and 
desipramine restored these levels (Fig. 5B and C). PB extract and desipramine also reduced 
erastin-induced cell death and restored erastin-induced ceramide generation (Fig. 5D and E). 
However, erastin did not affect TNF-α production (Fig. 5F).

Ferroptosis/ER stress axis and inflammation are regulated by independent 
pathways
LPS activated multiple pathways, including ER stress (phosphorylation of PERK, eIF2α), 
MAP kinase signaling (JNK, p38 phosphorylation), NF-κB p65 phosphorylation, and 
ferroptosis. However, PB extract demonstrated a reduction in the activation of these pathways 
(Fig. 2G). To identify key pathways in LPS-induced cell death, specific inhibitors were 
employed. Notably, 4-PBA (an ER stress inhibitor), SB203580 (a p38 inhibitor), SP600125 
(a JNK inhibitor), PDTC (a NF-κB inhibitor), and ferrostatin-1 (a ferroptosis inhibitor) were 
tested. SB203580, SP600125 and PDTC reduced LPS-induced cytokine production, whereas 
4-PBA and ferrostatin-1 showed no effect on inflammatory cytokine production (Fig. 6A-C). 
Interestingly, 4-PBA, PDTC and ferrostatin-1 exhibited the strongest inhibition of  
LPS-induced cell death (Fig. 6D). Furthermore, only ferrostatin-1 restored GSH and MDA 
levels (Fig. 6E and F). We also analyzed ER stress (phosphorylation of PERK, eIF2α), MAP 
kinase signaling (phosphorylation of p38, JNK), NF-κB p65 phosphorylation, and ferroptosis 
after treatment of various inhibitors. Ferrostatin-1 inhibited both ER stress and ferroptosis, 
but 4-PBA only reduced ER stress (Fig. 6G), suggesting that ferroptosis acts as an upstream 
pathway to ER stress. SB203580, SP600125, and PDTC treatment reduced p38, JNK, and 
NF-κB p65 phosphorylation, respectively (Fig. 6G). Previous studies have shown that ROS 
regulate the phosphorylation of PERK [30,31]. Therefore, we treated NAC, a ROS scavenger. 
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PERK, protein kinase R-like endoplasmic reticulum kinase; eIF2α, eukaryotic translation initiation factor 2A; Slc7a11, soluble carrier family 7 member 11; GPX4, 
glutathione peroxidase 4; ER, endoplasmic reticulum. 
*P < 0.05, **P < 0.01, ***P < 0.001.
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Fig. 5. PB extract and desipramine decrease erastin-induced ferroptosis and cell death. Hep3B cells were seeded at 3 × 104 cells/well in a 96-well plate and 4 × 105 
cells/well in a 6-well plate. They were treated with PB extract (100 µg/mL) or desipramine (2 µM) for 24 h, followed by 20 µM erastin for another 24 h.  
(A) Representative western blots of indicated proteins after erastin treatment in PB extract- or desipramine-pretreated Hep3B cells. GSH levels (B), MDA levels (C), 
MTT cell viability assay (D), ceramide levels (E), and TNF-α (F) were measured after erastin treatment in PB extract- or desipramine-pretreated Hep3B cells (n = 4). 
Values are expressed as mean ± SEM compared to control group. All experiments were performed in triplicate. 
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MDA, malondialdehyde; TNF, tumor necrosis factor. 
*P < 0.05, **P < 0.01, ***P < 0.001.



610https://doi.org/10.4162/nrp.2024.18.5.602

PB larvae reduces ferroptosis and inflammation

https://e-nrp.org

NAC treatment did not affect inflammatory cytokine production (Fig. 7A-C), but restored 
cell viability, GSH levels, and MDA levels (Fig. 7D-F). Similarly, NAC treatment only restored 
ER stress and ferroptosis, but not the phosphorylation of p38, JNK, and NF-κB p65 (Fig. 7G), 
suggesting that ROS production only affect ferroptosis and ER stress.
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Fig. 6. Ferroptosis/ER stress and NF-κB play an important role in LPS-induced cell death. Hep3B cells were seeded at 3 × 104 cells/well in a 96-well plate and 4 
× 105 cells/well in a 6-well plate. They were treated with various inhibitors (4-PBA [ER stress inhibitor, 5 mM], SB203580 [p38 inhibitor, 10 µM], SP600125 [JNK 
inhibitor, 10 µM], PDTC [NF-κB inhibitor, 10 µM], and ferrostatin-1 [ferroptosis inhibitor, 1 µM]) for 24 h, followed by 20 µg/mL LPS for another 24 h. TNF-α (A), 
IL-1β (B), and IL-6 (C) in cell culture media were measured using commercial enzyme-linked immunosorbent assay kits (n = 4). MTT cell viability assay (D), GSH 
levels (E), and MDA levels (F) were examined (n = 4). (G) Representative western blots of indicated proteins. Values are expressed as mean ± SEM compared to 
control group. All experiments were performed in triplicate. 
TNF, tumor necrosis factor; Con, control (untreated); LPS, lipopolysaccharides; IL, interleukin; GSH, glutathione; MDA, malondialdehyde; ERK, protein kinase 
R-like endoplasmic reticulum kinase; eIF2α, eukaryotic translation initiation factor 2A; Slc7a11, soluble carrier family 7 member 11; GPX4, glutathione peroxidase 4; 
NF, nuclear factor. 
**P < 0.01, ***P < 0.001. (continued to the next page)
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**P < 0.01, ***P < 0.001.
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Fig. 6. (Continued) Ferroptosis/ER stress and NF-κB play an important role in LPS-induced cell death. Hep3B cells were seeded at 3 × 104 cells/well in a 96-
well plate and 4 × 105 cells/well in a 6-well plate. They were treated with various inhibitors (4-PBA [ER stress inhibitor, 5 mM], SB203580 [p38 inhibitor, 10 µM], 
SP600125 [JNK inhibitor, 10 µM], PDTC [NF-κB inhibitor, 10 µM], and ferrostatin-1 [ferroptosis inhibitor, 1 µM]) for 24 h, followed by 20 µg/mL LPS for another 24 
h. TNF-α (A), IL-1β (B), and IL-6 (C) in cell culture media were measured using commercial enzyme-linked immunosorbent assay kits (n = 4). MTT cell viability 
assay (D), GSH levels (E), and MDA levels (F) were examined (n = 4). (G) Representative western blots of indicated proteins. Values are expressed as mean ± SEM 
compared to control group. All experiments were performed in triplicate. 
TNF, tumor necrosis factor; Con, control (untreated); LPS, lipopolysaccharides; IL, interleukin; GSH, glutathione; MDA, malondialdehyde; ERK, protein kinase 
R-like endoplasmic reticulum kinase; eIF2α, eukaryotic translation initiation factor 2A; Slc7a11, soluble carrier family 7 member 11; GPX4, glutathione peroxidase 4; 
NF, nuclear factor. 
*P < 0.05, **P < 0.01, ***P < 0.001.



THLE-2 cell line, a type of normal liver cell, also attenuated LPS-induced 
ferroptosis and inflammation
Because Hep3B cells are a hepatoma cell line [32], THLE-2 cells, which are normal liver cells, 
were used to confirm the inhibitory effects of PB extract on LPS-induced ferroptosis and 
inflammation. PB extract not only reduced LPS-induced inflammatory cytokine production 
(TNF-α, IL-1β, and IL-6) (Fig. 8A-C), but also restored cell viability, GSH levels, MDA 
levels, ASMase expression, and ceramide levels (Fig. 8D-H). LPS treatment upregulated 
phosphorylation of PERK, eIF2α, p38, JNK, and p65 while downregulating Slc7a11 and GPX4 
expression (Fig. 8I), which were restored by PB extract. Therefore, similar protective effects of 
PB extract were observed not only in Hep3B cells but also in THLE-2 cells.
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Fig. 8. PB extract reduces LPS-induced inflammation, ferroptosis and cell death in THLE-2 cells. THLE-2 cells 
were seeded at 3 × 104 cells/well in a 96-well plate and 4 × 105 cells/well in a 6-well plate. They were treated with 
PB extract (100 µg/mL) for 24 h, followed by 20 µg/mL LPS for another 24 h. TNF-α (A), IL-1β (B), and IL-6 (C) in 
cell culture media were measured using commercial enzyme-linked immunosorbent assay kits (n = 4). (D) MTT 
cell viability assay, (E) GSH levels, (F) MDA levels, (G) ASMase expression, and (H) ceramide levels were examined 
(n = 4). (I) Representative western blots of indicated proteins. Values are expressed as mean ± SEM compared to 
control group. All experiments were performed in triplicate. 
TNF, tumor necrosis factor; Con, control (untreated); PB, Protaetia brevitarsis; LPS, lipopolysaccharides; IL, 
interleukin; GSH, glutathione; MDA, malondialdehyde; ASMase, acid sphingomyelinase; PERK, protein kinase 
R-like endoplasmic reticulum kinase; eIF2α, eukaryotic translation initiation factor 2A; Slc7a11, soluble carrier 
family 7 member 11; GPX4, glutathione peroxidase 4. 
*P < 0.05, **P < 0.01, ***P < 0.001.



DISCUSSION

Hepatic injury is induced by many mechanisms, such as ER stress, apoptosis, inflammation, 
oxidative stress, and ferroptosis [28]. LPS, an inflammatory factor, was identified as a 
key contributor to these mechanisms, promoting ER stress, apoptosis, inflammation, 
and ferroptosis [28]. In our study, PB extracts demonstrated notable effects in reducing 
the phosphorylation of critical signaling molecules such as p65, p38 and JNK, which are 
implicated in the generation of inflammatory cytokines. Additionally, PB extracts exhibited a 
mitigating influence on ER stress and ferroptosis. PB extracts also decreased erastin-induced 
ferroptosis and ceramide production. These observed inhibitory effects were attributed to the 
downregulation of ASMase. ASMase, activated within lysosomes, rapidly releases ceramide 
under certain conditions, such as inflammation, ER stress, and autophagy [33]. Lysosomes 
can induce cell death through lysosomal membrane permeabilization (LMP), which 
release lysosomal contents into the cytosol, leading to cytosol acidification and damage 
to other organelles [34]. Ceramide, a product of ASMase activity, activates methionine 
adenosyltransferase (MAT1A), cathepsin D and JNK pathways, influencing processes such 
as autophagy, hepatic fibrosis and LMP [34]. Consequently, the downregulation of ASMase 
by PB extracts suggests potential anti-fibrotic and anti-inflammatory effects in hepatocytes. 
This implies that PB extracts may offer therapeutic benefits in mitigating hepatic injuries by 
modulating key pathways associated with inflammation, ferroptosis, and lysosomal function.

LPS triggers diverse signaling pathways, including ER stress, MAP kinase, NF-κB and 
ferroptosis. Among the inhibitors tested, those targeting ER stress, NF-κB p65, and 
ferroptosis demonstrated the most significant reduction in cell death. Ferroptosis inhibitor, 
ferrostatin-1, inhibited not only ferroptosis, but also ER stress. However, ER stress 
inhibitor, 4-PBA, only mitigated ER stress without impacting ferroptosis, suggesting that 
ferroptosis acts upstream of ER stress. Previous studies have shown that ROS induced 
PERK phosphorylation [30,31], indicating that ROS generated by LPS affect both ER stress 
and ferroptosis. However, inflammation is primarily induced by MAP kinase (p38, JNK) 
and NF-κB p65. Treatment with SB203580, SP600125, and PDTC effectively reduced LPS-
induced inflammatory cytokine production, but these inhibitors did not affect ER stress and 
ferroptosis. These findings collectively suggest that ferroptosis/ER stress and inflammation 
do not reciprocally influence each other (Fig. 9). Thus, ASMase activates ferroptosis, which 
subsequently triggers ER stress. Additionally, LPS-induced inflammation is activated by NF-
κB p65, MAP kinase (p38, JNK).

There have been no studies on ferroptosis in edible insects, and this study represents the first 
investigation into ferroptosis. However, numerous edible insects have anti-inflammatory 
and anti-ferroptosis properties; for example, T. molitor larvae and Gryllus bimaculatus have 
demonstrated anti-inflammatory properties in several studies [35,36]. Additionally, PB also 
has been identified as having anti-inflammatory effects, and reduced p65 phosphorylation 
[37]. In another study, PB paste and sauce extracts restored ethanol-induced GSH levels 
and superoxide dismutase protein levels, meaning that these exhibit antioxidant effects 
[21]. Similarly, other edible insects, such as T. molitor larvae and G. bimaculatus, have been 
found to possess antioxidant effects [22,23]. Therefore, most edible insects likely exhibit 
anti-ferroptosis effects owing to their antioxidant properties. However, in this study, only 
Hep3B cells and THLE-2 cells were used to study the anti-inflammatory and anti-ferroptosis 
properties of PB extracts. Therefore, these effects need to be further validated in animal and 
human studies, as well as in other cell lines. The PB extracts, which were prepared using 70% 

613https://doi.org/10.4162/nrp.2024.18.5.602

PB larvae reduces ferroptosis and inflammation

https://e-nrp.org



ethanol, are expected to contain various compounds, such as proteins, fatty acids, and other 
substances. Further experiments will be needed to isolate beneficial compounds with anti-
inflammatory and anti-ferroptosis functions from these substances.

PB extract shows promising therapeutic potential in mitigating hepatic injuries by targeting 
key pathways associated with inflammation, ferroptosis, and ER stress. The observed 
downregulation of ASMase not only reduces ferroptosis and ER stress, but also reduces 
inflammatory cytokine production via MAP kinase, NF-kB p65. This study not only unveils 
a novel investigation into ferroptosis in edible insects but also underscores the potential 
anti-inflammatory and antioxidant effects of PB, suggesting its application in hepatic health 
interventions.
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Fig. 9. Schematic showing the effects of PB extract in LPS-induced cell death. LPS induced ASMase activation, 
initiating a cascade that triggers ferroptosis, NF-κB, and MAP kinase pathways. Ferroptosis promotes ER stress, 
while NF-κB and MAP kinase pathways contribute to increased inflammation. Both pathways finally lead to cell 
death. PB extract inhibits ASMase activation, effectively inhibiting all these pathways and preventing cell death. 
LPS, lipopolysaccharides; PB, Protaetia brevitarsis; ASMase, acid sphingomyelinase; NF, nuclear factor; ER, 
endoplasmic reticulum.
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