DOI QR코드

DOI QR Code

Skin protective effect of Indian gooseberry and barley sprout complex on skin dryness, wrinkles, and melanogenesis by cell models

  • Minhee Lee (Department of Medical Nutrition, Kyung Hee University) ;
  • Dakyung Kim (Department of Medical Nutrition, Kyung Hee University) ;
  • Mi-Ryeong Park (HLscience Co., Ltd) ;
  • Soyoung Kim (HLscience Co., Ltd) ;
  • Jong-Lae Kim (HLscience Co., Ltd) ;
  • Ok-Kyung Kim (Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University) ;
  • Jeongmin Lee (Department of Medical Nutrition, Kyung Hee University)
  • Received : 2024.02.16
  • Accepted : 2024.05.28
  • Published : 2024.10.01

Abstract

BACKGROUND/OBJECTIVES: UV radiation is a major factor contributing to DNA damage in skin cells, including stem cells and mesenchymal stem cells, leading to the depletion of these crucial cells. This study examined whether a mixture of Indian gooseberry and barley sprout (IB) could inhibit UVB irradiation and 3-isobutyl-1-methylxanthine (IBMX)-induced photoaging and oxidative stress in the skin using HaCaT, Hs27, and B16F10 cells. MATERIALS/METHODS: The moisturizing-related factors, the collagen synthesis-related c-Jun N-terminal kinase (JNK)/c-Fos/c-Jun/matrix metalloproteinases (MMPs) pathway, and the melanogenesis-related cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/cAMP-responsive binding protein (CREB)/melanocyte inducing transcription factor (MITF)/tyrosinase-related protein (TRP)/tyrosinase activation pathways were analyzed in vitro by an enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and Western blot analysis. RESULTS: The IB complex increased the hyaluronic acid and sphingomyelin levels and the collagenase inhibitory activity, enhanced hydration-related factors, including collagen, hyaluronic acid synthase (HAS), elastin, long chain base subunit 1 (LCB1) (serine palmitoyltransferase; SPT), and delta 4-desaturase sphingolipid 1 (DEGS1), modulated the inflammatory cytokines levels, antioxidant enzyme activities and the NF-κB/MMPs/cyclooxygenase-2 (COX-2) pathway in UVB-irradiated HaCaT cells, and inhibited wrinkle formation by down-regulation of the JNK/c-Fos/c-Jun/MMP pathway and up-regulation of the transforming growth factor-𝛽 receptor I (TGF𝛽R1)/small mothers against decapentaplegic homolog (Smad3)/procollagen type I pathway in UVB-irradiated Hs27 cells. Moreover, the IB complex prevented melanin production by down-regulating the PKA/CREB/MITF/TRP-1/TRP-2 pathway in IBMX-induced B16F10 cells. CONCLUSION: These findings suggest that the IB complex has the potential to serve as a safeguard, shielding the skin from UVB radiation-induced photo-damage.

Keywords

References

  1. Coderch L, Lopez O, de la Maza A, Parra JL. Ceramides and skin function. Am J Clin Dermatol 2003;4:107-29.
  2. Tracy LE, Minasian RA, Caterson EJ. Extracellular matrix and dermal fibroblast function in the healing wound. Adv Wound Care (New Rochelle) 2016;5:119-36.
  3. Chuong CM, Nickoloff BJ, Elias PM, Goldsmith LA, Macher E, Maderson PA, Sundberg JP, Tagami H, Plonka PM, Thestrup-Pederson K, et al. What is the 'true' function of skin? Exp Dermatol 2002;11:159-87.
  4. Fisher GJ, Wang ZQ, Datta SC, Varani J, Kang S, Voorhees JJ. Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med 1997;337:1419-28.
  5. Rittie L, Fisher GJ. UV-light-induced signal cascades and skin aging. Ageing Res Rev 2002;1:705-20.
  6. Dai G, Freudenberger T, Zipper P, Melchior A, Grether-Beck S, Rabausch B, de Groot J, Twarock S, Hanenberg H, Homey B, et al. Chronic ultraviolet B irradiation causes loss of hyaluronic acid from mouse dermis because of down-regulation of hyaluronic acid synthases. Am J Pathol 2007;171:1451-61.
  7. Cavinato M, Jansen-Durr P. Molecular mechanisms of UVB-induced senescence of dermal fibroblasts and its relevance for photoaging of the human skin. Exp Gerontol 2017;94:78-82.
  8. Thilakchand KR, Mathai RT, Simon P, Ravi RT, Baliga-Rao MP, Baliga MS. Hepatoprotective properties of the Indian gooseberry (Emblica officinalis Gaertn): a review. Food Funct 2013;4:1431-41.
  9. Kumar G, Madka V, Pathuri G, Ganta V, Rao CV. Molecular mechanisms of cancer prevention by gooseberry (Phyllanthus emblica). Nutr Cancer 2022;74:2291-302.
  10. Akhtar MS, Ramzan A, Ali A, Ahmad M. Effect of Amla fruit (Emblica officinalis Gaertn.) on blood glucose and lipid profile of normal subjects and type 2 diabetic patients. Int J Food Sci Nutr 2011;62:609-16.
  11. Tewari R, Kumar V, Sharma HK. Physical and chemical characteristics of different cultivars of Indian gooseberry (Emblica officinalis). J Food Sci Technol 2019;56:1641-8.
  12. Kaur E, Bhardwaj RD, Kaur S, Grewal SK. Drought stress-induced changes in redox metabolism of barley (Hordeum vulgare L.). Biol Futur 2021;72:347-58.
  13. Chelkowski J, Tyrka M, Sobkiewicz A. Resistance genes in barley (Hordeum vulgare L.) and their identification with molecular markers. J Appl Genet 2003;44:291-309.
  14. Kato E, Tsuruma A, Amishima A, Satoh H. Proteinous pancreatic lipase inhibitor is responsible for the antiobesity effect of young barley (Hordeum vulgare L.) leaf extract. Biosci Biotechnol Biochem 2021;85:1885-9.
  15. Park SJ, Lee M, Oh DH, Kim JL, Park MR, Kim TG, Kim OK, Lee J. Emblica officinalis and Hordeum vulgare L. mixture regulates lipolytic activity in differentiated 3T3-L1 cells. J Med Food 2021;24:172-9.
  16. Park SJ, Kim JL, Park MR, Lee JW, Kim OK, Lee J. Indian gooseberry and barley sprout mixture prevents obesity by regulating adipogenesis, lipogenesis, and lipolysis in C57BL/6J mice with high-fat diet-induced obesity. J Funct Foods 2022;90:104951.
  17. Wunsch E, Heidrich HG. Zur quantitativen bestimmung der kollagenase. Hoppe Seylers Z Physiol Chem 1963;333:149-51.
  18. Cannell RJ, Kellam SJ, Owsianka AM, Walker JM. Results of a large scale screen of microalgae for the production of protease inhibitors. Planta Med 1988;54:10-4.
  19. Pillai S, Oresajo C, Hayward J. Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation - a review. Int J Cosmet Sci 2005;27:17-34.
  20. Chiang HM, Chen HC, Chiu HH, Chen CW, Wang SM, Wen KC. Neonauclea reticulata (Havil.) Merr stimulates skin regeneration after UVB exposure via ROS scavenging and modulation of the MAPK/MMPs/Collagen pathway. Evid Based Complement Alternat Med 2013;2013:324864.
  21. Lan CE, Hung YT, Fang AH, Ching-Shuang W. Effects of irradiance on UVA-induced skin aging. J Dermatol Sci 2019;94:220-8.
  22. Lee M, Kim D, Park SH, Jung J, Cho W, Yu AR, Lee J. Fish collagen peptide (Naticol®) protects the skin from dryness, wrinkle formation, and melanogenesis both in vitro and in vivo. Prev Nutr Food Sci 2022;27:423-35.
  23. Kim MJ, Shin SY, Song NR, Kim S, Sun SO, Park KM. Bioassay-guided characterization, antioxidant, anti-melanogenic and anti-photoaging activities of Pueraria thunbergiana L. leaf extracts in human epidermal keratinocytes (HaCaT) cells. Processes. 2022;10:2156.
  24. Lee B, Moon KM, Lee BS, Yang JH, Park KI, Cho WK, Ma JY. Swertiajaponin inhibits skin pigmentation by dual mechanisms to suppress tyrosinase. Oncotarget 2017;8:95530-41.
  25. Wiest L, Kerscher M. Native hyaluronic acid in dermatology--results of an expert meeting. J Dtsch Dermatol Ges 2008;6:176-80.
  26. Rabionet M, Gorgas K, Sandhoff R. Ceramide synthesis in the epidermis. Biochim Biophys Acta 2014;1841:422-34.
  27. Sanchez J, Le Jan S, Muller C, Francois C, Renard Y, Durlach A, Bernard P, Reguiai Z, Antonicelli F. Matrix remodelling and MMP expression/activation are associated with hidradenitis suppurativa skin inflammation. Exp Dermatol 2019;28:593-600.
  28. Chun KS, Langenbach R. A proposed COX-2 and PGE(2) receptor interaction in UV-exposed mouse skin. Mol Carcinog 2007;46:699-704.
  29. Kondo S. The roles of cytokines in photoaging. J Dermatol Sci 2000;23 Suppl 1:S30-6.
  30. Salminen A, Kaarniranta K, Kauppinen A. Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm Res 2022;71:817-31.
  31. Lan CE, Hung YT, Fang AH, Ching-Shuang W. Effects of irradiance on UVA-induced skin aging. J Dermatol Sci 2019;94:220-8.
  32. Tanaka Y, Uchi H, Ito T, Furue M. Indirubin-pregnane X receptor-JNK axis accelerates skin wound healing. Sci Rep 2019;9:18174.
  33. Liarte S, Bernabe-Garcia A, Nicolas FJ. Role of TGF-β in skin chronic wounds: a keratinocyte perspective. Cells 2020;9:306.
  34. Ke Y, Wang XJ. TGFβ signaling in photoaging and UV-induced skin cancer. J Invest Dermatol 2021;141:1104-10.
  35. Park HY, Kosmadaki M, Yaar M, Gilchrest BA. Cellular mechanisms regulating human melanogenesis. Cell Mol Life Sci 2009;66:1493-506.
  36. D'Mello SA, Finlay GJ, Baguley BC, Askarian-Amiri ME. Signaling pathways in melanogenesis. Int J Mol Sci 2016;17:1144.
  37. Rzepka Z, Buszman E, Beberok A, Wrzesniok D. From tyrosine to melanin: signaling pathways and factors regulating melanogenesis. Postepy Hig Med Dosw 2016;70:695-708.