DOI QR코드

DOI QR Code

Skin protective effect of Indian gooseberry and barley sprout complex on skin dryness, wrinkles, and melanogenesis by cell models

  • Received : 2024.02.16
  • Accepted : 2024.05.28
  • Published : 2024.10.01

Abstract

BACKGROUND/OBJECTIVES: UV radiation is a major factor contributing to DNA damage in skin cells, including stem cells and mesenchymal stem cells, leading to the depletion of these crucial cells. This study examined whether a mixture of Indian gooseberry and barley sprout (IB) could inhibit UVB irradiation and 3-isobutyl-1-methylxanthine (IBMX)-induced photoaging and oxidative stress in the skin using HaCaT, Hs27, and B16F10 cells. MATERIALS/METHODS: The moisturizing-related factors, the collagen synthesis-related c-Jun N-terminal kinase (JNK)/c-Fos/c-Jun/matrix metalloproteinases (MMPs) pathway, and the melanogenesis-related cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/cAMP-responsive binding protein (CREB)/melanocyte inducing transcription factor (MITF)/tyrosinase-related protein (TRP)/tyrosinase activation pathways were analyzed in vitro by an enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and Western blot analysis. RESULTS: The IB complex increased the hyaluronic acid and sphingomyelin levels and the collagenase inhibitory activity, enhanced hydration-related factors, including collagen, hyaluronic acid synthase (HAS), elastin, long chain base subunit 1 (LCB1) (serine palmitoyltransferase; SPT), and delta 4-desaturase sphingolipid 1 (DEGS1), modulated the inflammatory cytokines levels, antioxidant enzyme activities and the NF-κB/MMPs/cyclooxygenase-2 (COX-2) pathway in UVB-irradiated HaCaT cells, and inhibited wrinkle formation by down-regulation of the JNK/c-Fos/c-Jun/MMP pathway and up-regulation of the transforming growth factor-𝛽 receptor I (TGF𝛽R1)/small mothers against decapentaplegic homolog (Smad3)/procollagen type I pathway in UVB-irradiated Hs27 cells. Moreover, the IB complex prevented melanin production by down-regulating the PKA/CREB/MITF/TRP-1/TRP-2 pathway in IBMX-induced B16F10 cells. CONCLUSION: These findings suggest that the IB complex has the potential to serve as a safeguard, shielding the skin from UVB radiation-induced photo-damage.

Keywords

References

  1. Coderch L, Lopez O, de la Maza A, Parra JL. Ceramides and skin function. Am J Clin Dermatol 2003;4:107-29. https://doi.org/10.2165/00128071-200304020-00004
  2. Tracy LE, Minasian RA, Caterson EJ. Extracellular matrix and dermal fibroblast function in the healing wound. Adv Wound Care (New Rochelle) 2016;5:119-36. https://doi.org/10.1089/wound.2014.0561
  3. Chuong CM, Nickoloff BJ, Elias PM, Goldsmith LA, Macher E, Maderson PA, Sundberg JP, Tagami H, Plonka PM, Thestrup-Pederson K, et al. What is the 'true' function of skin? Exp Dermatol 2002;11:159-87. https://doi.org/10.1034/j.1600-0625.2002.00112.x
  4. Fisher GJ, Wang ZQ, Datta SC, Varani J, Kang S, Voorhees JJ. Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med 1997;337:1419-28. https://doi.org/10.1056/NEJM199711133372003
  5. Rittie L, Fisher GJ. UV-light-induced signal cascades and skin aging. Ageing Res Rev 2002;1:705-20. https://doi.org/10.1016/S1568-1637(02)00024-7
  6. Dai G, Freudenberger T, Zipper P, Melchior A, Grether-Beck S, Rabausch B, de Groot J, Twarock S, Hanenberg H, Homey B, et al. Chronic ultraviolet B irradiation causes loss of hyaluronic acid from mouse dermis because of down-regulation of hyaluronic acid synthases. Am J Pathol 2007;171:1451-61. https://doi.org/10.2353/ajpath.2007.070136
  7. Cavinato M, Jansen-Durr P. Molecular mechanisms of UVB-induced senescence of dermal fibroblasts and its relevance for photoaging of the human skin. Exp Gerontol 2017;94:78-82. https://doi.org/10.1016/j.exger.2017.01.009
  8. Thilakchand KR, Mathai RT, Simon P, Ravi RT, Baliga-Rao MP, Baliga MS. Hepatoprotective properties of the Indian gooseberry (Emblica officinalis Gaertn): a review. Food Funct 2013;4:1431-41. https://doi.org/10.1039/c3fo60237k
  9. Kumar G, Madka V, Pathuri G, Ganta V, Rao CV. Molecular mechanisms of cancer prevention by gooseberry (Phyllanthus emblica). Nutr Cancer 2022;74:2291-302. https://doi.org/10.1080/01635581.2021.2008988
  10. Akhtar MS, Ramzan A, Ali A, Ahmad M. Effect of Amla fruit (Emblica officinalis Gaertn.) on blood glucose and lipid profile of normal subjects and type 2 diabetic patients. Int J Food Sci Nutr 2011;62:609-16. https://doi.org/10.3109/09637486.2011.560565
  11. Tewari R, Kumar V, Sharma HK. Physical and chemical characteristics of different cultivars of Indian gooseberry (Emblica officinalis). J Food Sci Technol 2019;56:1641-8. https://doi.org/10.1007/s13197-019-03595-y
  12. Kaur E, Bhardwaj RD, Kaur S, Grewal SK. Drought stress-induced changes in redox metabolism of barley (Hordeum vulgare L.). Biol Futur 2021;72:347-58. https://doi.org/10.1007/s42977-021-00084-2
  13. Chelkowski J, Tyrka M, Sobkiewicz A. Resistance genes in barley (Hordeum vulgare L.) and their identification with molecular markers. J Appl Genet 2003;44:291-309.
  14. Kato E, Tsuruma A, Amishima A, Satoh H. Proteinous pancreatic lipase inhibitor is responsible for the antiobesity effect of young barley (Hordeum vulgare L.) leaf extract. Biosci Biotechnol Biochem 2021;85:1885-9. https://doi.org/10.1093/bbb/zbab096
  15. Park SJ, Lee M, Oh DH, Kim JL, Park MR, Kim TG, Kim OK, Lee J. Emblica officinalis and Hordeum vulgare L. mixture regulates lipolytic activity in differentiated 3T3-L1 cells. J Med Food 2021;24:172-9. https://doi.org/10.1089/jmf.2020.4810
  16. Park SJ, Kim JL, Park MR, Lee JW, Kim OK, Lee J. Indian gooseberry and barley sprout mixture prevents obesity by regulating adipogenesis, lipogenesis, and lipolysis in C57BL/6J mice with high-fat diet-induced obesity. J Funct Foods 2022;90:104951.
  17. Wunsch E, Heidrich HG. Zur quantitativen bestimmung der kollagenase. Hoppe Seylers Z Physiol Chem 1963;333:149-51. https://doi.org/10.1515/bchm2.1963.333.1.149
  18. Cannell RJ, Kellam SJ, Owsianka AM, Walker JM. Results of a large scale screen of microalgae for the production of protease inhibitors. Planta Med 1988;54:10-4. https://doi.org/10.1055/s-2006-962319
  19. Pillai S, Oresajo C, Hayward J. Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation - a review. Int J Cosmet Sci 2005;27:17-34. https://doi.org/10.1111/j.1467-2494.2004.00241.x
  20. Chiang HM, Chen HC, Chiu HH, Chen CW, Wang SM, Wen KC. Neonauclea reticulata (Havil.) Merr stimulates skin regeneration after UVB exposure via ROS scavenging and modulation of the MAPK/MMPs/Collagen pathway. Evid Based Complement Alternat Med 2013;2013:324864.
  21. Lan CE, Hung YT, Fang AH, Ching-Shuang W. Effects of irradiance on UVA-induced skin aging. J Dermatol Sci 2019;94:220-8. https://doi.org/10.1016/j.jdermsci.2019.03.005
  22. Lee M, Kim D, Park SH, Jung J, Cho W, Yu AR, Lee J. Fish collagen peptide (Naticol®) protects the skin from dryness, wrinkle formation, and melanogenesis both in vitro and in vivo. Prev Nutr Food Sci 2022;27:423-35. https://doi.org/10.3746/pnf.2022.27.4.423
  23. Kim MJ, Shin SY, Song NR, Kim S, Sun SO, Park KM. Bioassay-guided characterization, antioxidant, anti-melanogenic and anti-photoaging activities of Pueraria thunbergiana L. leaf extracts in human epidermal keratinocytes (HaCaT) cells. Processes. 2022;10:2156.
  24. Lee B, Moon KM, Lee BS, Yang JH, Park KI, Cho WK, Ma JY. Swertiajaponin inhibits skin pigmentation by dual mechanisms to suppress tyrosinase. Oncotarget 2017;8:95530-41. https://doi.org/10.18632/oncotarget.20913
  25. Wiest L, Kerscher M. Native hyaluronic acid in dermatology--results of an expert meeting. J Dtsch Dermatol Ges 2008;6:176-80. https://doi.org/10.1111/j.1610-0387.2008.06639.x
  26. Rabionet M, Gorgas K, Sandhoff R. Ceramide synthesis in the epidermis. Biochim Biophys Acta 2014;1841:422-34. https://doi.org/10.1016/j.bbalip.2013.08.011
  27. Sanchez J, Le Jan S, Muller C, Francois C, Renard Y, Durlach A, Bernard P, Reguiai Z, Antonicelli F. Matrix remodelling and MMP expression/activation are associated with hidradenitis suppurativa skin inflammation. Exp Dermatol 2019;28:593-600. https://doi.org/10.1111/exd.13919
  28. Chun KS, Langenbach R. A proposed COX-2 and PGE(2) receptor interaction in UV-exposed mouse skin. Mol Carcinog 2007;46:699-704. https://doi.org/10.1002/mc.20354
  29. Kondo S. The roles of cytokines in photoaging. J Dermatol Sci 2000;23 Suppl 1:S30-6. https://doi.org/10.1016/S0923-1811(99)00076-6
  30. Salminen A, Kaarniranta K, Kauppinen A. Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm Res 2022;71:817-31. https://doi.org/10.1007/s00011-022-01598-8
  31. Lan CE, Hung YT, Fang AH, Ching-Shuang W. Effects of irradiance on UVA-induced skin aging. J Dermatol Sci 2019;94:220-8. https://doi.org/10.1016/j.jdermsci.2019.03.005
  32. Tanaka Y, Uchi H, Ito T, Furue M. Indirubin-pregnane X receptor-JNK axis accelerates skin wound healing. Sci Rep 2019;9:18174.
  33. Liarte S, Bernabe-Garcia A, Nicolas FJ. Role of TGF-β in skin chronic wounds: a keratinocyte perspective. Cells 2020;9:306.
  34. Ke Y, Wang XJ. TGFβ signaling in photoaging and UV-induced skin cancer. J Invest Dermatol 2021;141:1104-10. https://doi.org/10.1016/j.jid.2020.11.007
  35. Park HY, Kosmadaki M, Yaar M, Gilchrest BA. Cellular mechanisms regulating human melanogenesis. Cell Mol Life Sci 2009;66:1493-506. https://doi.org/10.1007/s00018-009-8703-8
  36. D'Mello SA, Finlay GJ, Baguley BC, Askarian-Amiri ME. Signaling pathways in melanogenesis. Int J Mol Sci 2016;17:1144.
  37. Rzepka Z, Buszman E, Beberok A, Wrzesniok D. From tyrosine to melanin: signaling pathways and factors regulating melanogenesis. Postepy Hig Med Dosw 2016;70:695-708. https://doi.org/10.5604/17322693.1208033