References
- Anevlavi, D. and Belibassakis, K.A. (2022), "Analysis of partially cavitating hydrofoils under the free surface using BEM-based adjoint optimization", Appl. Math. Model., 112, 415-435. https://doi.org/10.1016/j.apm.2022.07.033.
- Anevlavi, D. and Belibassakis, K.A. (2021), "An adjoint optimization prediction method for partially cavitating hydrofoils", J. Mar. Sci. Eng., 9, 1-18. https://doi.org/10.3390/jmse9090976.
- Bai, K.J. and Han, J.A. (1994), "A localized finite-element method for nonlinear steady waves due to a two-dimensional hydrofoil", J. Ship Res., 58, 42-51. https://doi.org/10.5957/jsr.1994.38.1.42.
- Bal, S., Kinnas, S.A. and Lee, H. (2001), "Numerical analysis of 2-D and 3-D cavitating hydrofoils under a free surface", J. Ship Res., 45, 34-49. https://doi.org/10.5957/jsr.2001.45.1.34.
- Bal, S. (2008), "Prediction of wave pattern and wave resistance of surface piercing bodies by a boundary element method", Int. J. Numer. Method. Fl., 56, 305-329. https://doi.org/10.1002/fld.1527.
- Bal, S. (2011), "The effect of finite depth on 2-D and 3-D cavitating hydrofoils", J. Mar. Sci. Technol., 16, 129-142. https://doi.org/10.1007/s0077-011-0117.2.
- Bal, S. (2016), "Free surface effects on 2-D airfoils and 3-D wings moving over water", Ocean Syst. Eng., 6(6), 245-264. https://doi.org/10.12989/ose.2016.6.245.
- Bal, S. and Kinnas, S.A. (2002), "A BEM for the prediction of free surface effect on cavitating hydrofoils", Comput. Mech., 28, 260-274. https://doi.org/10.1007/s00466.001.0286.7.
- Celik, F., Ozden, Y.A. and Bal, S. (2014), "Numerical simulation of the flow around two-dimensional partially cavitating hydrofoils", J. Mar. Sci. Appl., 13, 245-254. https://doi.org/10.1007/s11804.01.1254.x.
- Chen, Z.M. (2012), "A vortex-based panel method for potential flow simulation around a hydrofoil", J. Fluids Struct., 28, 378-391. https://doi.org/10.116/j.jfluidstructs.2011.10.003.
- Choi, J.K. and Kinnas, S.A. (1998), "Numerical water tunnel in two and three dimensions", J. Ship Res., 42, 86-98. https://doi.org/10.5957/jsr.1998.42.2.86.
- Conesa, F.R. and Liem, R.P. (2020), "Slotted hydrofoil design optimization to minimize cavitation in amphibious aircraft application: A numerical simulation approach", Adv. Aircraft Spacecraft Sci., 7(4), 309-333. https://doi.org/10.12989/aas.2020.7.4.309.
- Hess, J.H. and Smith, A.M.O. (1967), "Calculation of potential flow about arbitrary bodies", Progress in Aeronautical Sciences, 8, 1-138. https://doi.org/10.1016/076-021(67)9000-6.
- Faltinsen, O.M. and Semenov, Y.A. (2008), "The effects of gravity and cavitation on a hydrofoil near the free surface", J. Fluid Mech., 597, 371-394. https://doi.org/10.1017/s0022112007009822.
- Gradshteyn, I.S. and Ryzhik, I.M. (1965), "Table of integrals, series and products", Academic Press, USA. https://doi.org/10.1016/C2010-0-64839-5.
- Gretton, G.I., Bryden, I.G., Couch, S.J. and Ingram, D.M (2010), "The CFD simulation of a lifting hydrofoil in close proximity to a free surface", Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, OMAE2010-20936. https://doi.org/10.1115/OMAE2010-20936.
- Roohi, E., Zahiri, A.P. and Passandideh-Fard, M. (2013), "Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF and LES turbulence model", Appl. Math. Model., 37, 6469-6448. https://doi.org/10.1016/j.apm.2012.09.002.
- Karim, Md.M., Prasad, B. and Rahman, N. (2014), "Numerical simulation of free surface water wave for the flow around NACA0015 hydrofoil using the Volume of Fluid (VOF) method", Ocean Eng., 78, 89-94. https://doi.org/10.1016/j.oceaneng.2013.12.013.
- Katz, J. and Plotkin, A. (2001), "Low speed aerodynamics: From wing theory to panel methods", Cambridge University Press, Cambridge, USA. https://doi.org/10.1017/CB09780511810329.
- Katz, J. (2019), "Convergence and accuracy of potential flow methods", J. Aircraft, 56, 2371-2375. https://doi.org/10.2514/1.C03483.
- Kinnas, S.A. (1992), "Inversion of the source and vorticity equations for supercavitating hydrofoils", J. Eng. Math., 26, 349-361. https://doi.org/10.1007/BF00042728.
- Mansoor, W.F., Hocking, G.C. and Farrow, D.E. (2022), "Flow induced by a line sink near a vertical wall in a fluid with a free surface Part I: infinite depth", J. Eng. Math., 133, 1-17. https://doi.org/10.1007/s10665-022-10217-8.
- Plotkin, A. (1976), "A note on the thin-hydrofoil theory of Keldysh and Lavrenties", J. Ship Res., 20, 95-97. https://doi.org/10.5957/jsr.1976.20.2.95.
- Vrinos, P., Samouchos, K. and Giannakoglou, K. (2021), "The continuous adjointcut-cell method for shape optimization in cavitating flows", Comput. Fluids, 224, 104974. https://doi.org/10.1016/j.compfluid.2021.104974.
- Xie, Z., Liu, Y. and Falzarano, J. (2017), "A more efficient numerical method of the green function in finite water depth", Ocean Syst. Eng., 7(4), 399-412. https://doi.org/10.12989/ose.2017.7.4.399.
- Yu, M. and Falzarano, J. (2017), "A comparison of the Neumann-kelvin and rankine source methods for wave, resistance calculations", Ocean Syst. Eng., 7(4), 371-398. https://doi.org/10.12989/ose.2017.7.4.371.