DOI QR코드

DOI QR Code

내성천 식생사주의 공간적 분포 유형과 평면 기하 특성

Spatial Distribution Patterns and Planar Geometric Characteristics of Vegetated Bars in the Naesungcheon Stream

  • 류지원 (과학기술연합대학원대학교 건설환경공학) ;
  • 장은경 (한국건설기술연구원 수자원하천연구본부) ;
  • 지운 (한국건설기술연구원 수자원하천연구본부)
  • Jiwon Ryu (Civil and Environmental Engineering, KICT School, University of Science and Technology) ;
  • Eun-kyung Jang (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Un Ji (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2024.09.10
  • 심사 : 2024.09.27
  • 발행 : 2024.09.30

초록

본 연구에서는 내성천 내 식생사주의 공간적 분포 형태를 분류하고, 이를 기반으로 범용적 적용이 가능한 평면 기하학적 변수를 정의하여 우점 분포 형태의 식생사주 특성을 정량화하였다. 분석 결과, 식생사주의 공간적 분포는 크게 네 가지 유형으로 분류할 수 있었으며, 그 중 식생이 분포하는 교호사주 및 점사주 유형과 하도 내 단일 또는 다수의 식생사주가 식생이 우거진 홍수터와 함께 분포하는 유형이 연구 대상 구간의 90% 이상을 차지하는 것으로 나타났다. 내성천은 비교적 큰 규모의 식생사주가 넓은 간격으로 연이어 분포하거나 중첩된 다수의 소규모 식생사주와 복합적으로 분포하는 경향이 있는 것으로 나타났다. 본 연구에서 도출된 내성천의 정량화된 식생사주의 공간적 분포 특성은 유사한 하천에서의 식생 관리에 중요한 기초 자료로 활용될 수 있을 것이다. 또한, 이러한 식생사주의 평면 기하학적 변수와 공간적 분포 형태에 대한 분석 결과는 홍수 관리와 생태수리학적 연구에서 실제 모습에 가까운 하천의 형태를 모사한 실험 설계가 가능하게 하여 식생사주와 흐름 및 하상변동의 복잡한 상호작용 특성을 해석하는 데 기여할 수 있을 것이다.

This study classified spatial distribution patterns of vegetated bars in the Naesungcheon Stream, defined universally applicable planar geometric variables, and quantified characteristics of dominant vegetated bar distribution forms. The analysis identified four primary types of spatial distribution, with two types (vegetated alternate/point bars and vegetated floodplains with single or multi-vegetated bars) accounting for more than 90% of the study area. Study results indicated that relatively large vegetated bars tended to be widely spaced or distributed in combination with multiple smaller vegetated bars that were overlapped in the Naesungcheon stream. Quantified spatial distribution characteristics of vegetated bars derived from this study could be used as essential basis information for vegetation management in rivers similar to the Naesungcheon Stream. Additionally, analysis results for planar geometric variables and spatial distribution forms are expected to facilitate experimental designs that mimic river conditions in flood management and ecohydraulic studies, contributing to the interpretation of complex characteristics of interactions between vegetated bars, flow, and bed changes.

키워드

과제정보

This work was supported by Korea Environment Industry & Technology Institute (KEITI) through Climate Change Research Program, funded by Korea Ministry of Environment (MOE) (RS-2024-00332494).

참고문헌

  1. Bae, I. 2024. Reach-scale analysis of flow resistance due to woody riparian vegetation patches. University of Science and Technology, Korea. (in Korean)
  2. Baptist, M.J., Babovic, V., Rodriguez Uthurburu, J., Keijzer, M., Uittenbogaard, R.E., Mynett, A. and Verwey, A. 2007. On inducing equations for vegetation resistance. Journal of Hydraulic Research 45(4): 435-450.
  3. Bae, I., Ji, U., Jarvela, J. and Vastila, K. 2024. Blockage effect of emergent riparian vegetation patches on river flow. Journal of Hydrology 635: 131197.
  4. Champion, P.D. and Tanner, C.C. 2000. Seasonality of macrophytes and interaction with flow in a New Zealand lowland stream. Hydrobiologia 441: 1-12.
  5. Cornacchia, L., Folkard, A., Davies, G., Grabowski, R. C., van de Koppel, J., van der Wal, D., Wharton, G., Puijalon, S. and Bouma, T.J. 2019. Plants face the flow in V formation: A study of plant patch alignment in streams. Limnology and Oceanography 64(3): 1087-1102.
  6. Cornacchia, L., Lapetoule, G., Licci, S., Basquin, H. and Puijalon, S. 2023. How to build vegetation patches in hydraulic studies: A hydrodynamic-ecological perspective on a biological object. Journal of Ecohydraulics 8(2): 105-120.
  7. Erickson, H.E., Soto, P., Johnson, D.W., Roath, B. and Hunsaker, C. 2005. Effects of vegetation patches on soil nutrient pools and fluxes within a mixed-conifer forest. Forest Science 51(3): 211-220.
  8. Hwang, S.D., Choi, S.H., Lee, S.J. and Jang, C.L. 2013. Long-term riverbed change simulation and analisys in the river. Spatial Information Research 21(5): 1-6. 
  9. Jarvela, J. 2002. Flow resistance of flexible and stiff vegetation: A flume study with natural plants. Journal of Hydrology 269(1-2): 44-54.
  10. Ji, U., Jarvela, J., Vastila, K. and Bae, I. 2023a. Experimentation and modeling of reach-scale vegetative flow resistance due to willow patches. Journal of Hydraulic Engineering 149(7): 04023018.
  11. Ji, U., Jarvela, J., Vastila, K. and Bae, I. 2023b. Experimentation and Modeling of Reach-Scale Vegetative Flow Resistance due to Willow Patches. Journal of Hydraulic Engineering 149(7): 04023018.
  12. Kazem, M., Afzalimehr, H. and Sui, J. 2021. Formation of coherent flow structures beyond vegetation patches in channel. Water 13(20): 2812.
  13. Kim, W. and Kim, S. 2019. Analysis of the riparian vegetation expansion in middle size rivers in Korea. Journal of Korea Water Resources Association, 52: 875-885. (in Korean)
  14. Kleeberg, A., Kohler, J., Sukhodolova, T. and Sukhodolov, A. 2010. Effects of aquatic macrophytes on organic matter deposition, resuspension and phosphorus entrainment in a lowland river. Freshwater Biology 55(2): 326-345.
  15. Lee, C., Choi, H., Kim, D., van Oorschot, M., Penning, E. and Geerling, G. 2023. Bio-geomorphic alteration through shifting flow regime in a modified monsoonal river system in Korea. River Research and Applications 39(8): 1639-1651.
  16. Lee, C., Kim, D.G., Ji, U. and Kim, J. 2019. Dataset of long-term monitoring on the change in hydrology, channel morphology, landscape and vegetation along the Naeseong stream (I). Ecology and Resilient Infrastructure 6(1): 23-33. (in Korean)
  17. Lee, S.H., Ock, K.Y. and Choi, J.K. 2008. A Study on the Expansion Process of Vegetation on Sand-bars in Fluvial Meandering Stream. Korean Society of Environment and Ecology 22(6): 658-665. (in Korean)
  18. Li, M., Yan, Q., Li, G., Yi, M. and Li, J. 2022. Spatiotemporal changes of vegetation cover and its influencing factors in northeast China from 2000 to 2021. Remote Sensing 14(22): 5720.
  19. Licci, S., Marmonier, P., Wharton, G., Delolme, C., Mermillod-Blondin, F., Simon, L., Vallier, F., Bouma, T.J. and Puijalon, S. 2022. Scale-dependent effects of vegetation on flow velocity and biogeochemical conditions in aquatic systems. Science of the Total Environment 833: 155123.
  20. Liu, C. and Shan, Y. 2022. Impact of an emergent model vegetation patch on flow adjustment and velocity. Proceedings of the Institution of Civil Engineers-Water Management 175(2): 55-66.
  21. Madsen, J.D., Chambers, P.A., James, W.F., Koch, E.W. and Westlake, D.F. 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71-84.
  22. Naden, P., Rameshwaran, P., Mountford, O. and Robertson, C. 2006. The influence of macrophyte growth, typical of eutrophic conditions, on river flow velocities and turbulence production. Hydrological Processes: An International Journal 20(18): 3915-3938.
  23. Naiman, R.J., Decamps, H. and Pollock, M. 1993. The role of riparian corridors in maintaining regional biodiversity. Ecological Applications 3(2): 209-212.
  24. Nepf, H.M. 2012. Flow and transport in regions with aquatic vegetation. Annual Review of Fluid Mechanics 44(1): 123-142.
  25. Nikora, V., Larned, S., Nikora, N., Debnath, K., Cooper, G. and Reid, M. 2008. Hydraulic Resistance due to Aquatic Vegetation in Small Streams: Field Study. Journal of Hydraulic Engineering 134(9): 1326-1332.
  26. Park, B.J., Jang, C.L., Lee, S.H. and Jung, K.D. 2008. A Study on the Sandbar and Vegetation Area Alteration at the Downstream of Dam. Journal of Korea Water Resources Association 41(12): 1163-1172. (in Korean)
  27. Pickett, S.T., Burch, W.R., Dalton, S.E., Foresman, T.W., Grove, J.M. and Rowntree, R. 1997. A conceptual framework for the study of human ecosystems in urban areas. Urban Ecosystems 1: 185-199.
  28. Pietri, L., Petroff, A., Amielh, M. and Anselmet, F. 2009. Turbulence characteristics within sparse and dense canopies. Environmental Fluid Mechanics 9(3): 297-320.
  29. Schoelynck, J., Creelle, S., Buis, K., De Mulder, T., Emsens, W.-J., Hein, T., Meire, D., Meire, P., Okruszko, T. and Preiner, S. 2018. What is a macrophyte patch? Patch identification in aquatic ecosystems and guidelines for consistent delineation. Ecohydrology & Hydrobiology 18(1): 1-9.
  30. Schoelynck, J., Muller, F., Vandevenne, F., Bal, K., Barao, L., Smis, A., Opdekamp, W., Meire, P. and Struyf, E. 2014. Silicon-vegetation interaction in multiple ecosystems: A review. Journal of Vegetation Science 25(1): 301-313.
  31. Van Dijk, W., Teske, R., Van de Lageweg, W. and Kleinhans, M. 2013. Effects of vegetation distribution on experimental river channel dynamics. Water Resources Research 49(11): 7558-7574.
  32. Vastila, K. and Jarvela, J. 2014. Modeling the flow resistance of woody vegetation using physically based properties of the foliage and stem, Water Resources Research 50(1): 229-245.
  33. Wang, J. and Zhang, Z. 2019. Evaluating riparian vegetation roughness computation methods integrated within HEC-RAS. Journal of Hydraulic Engineering 145(6): 04019020.
  34. Woo, H., Cho, K.-H., Jang, C.L. and Lee, C. 2019. Fluvial Processes and Vegetation-Research Trends and Implications. Ecology and Resilient Infrastructure 6(2): 89-100.