DOI QR코드

DOI QR Code

Free vibration response of multi-layered plates with trigonometrically distributed porosity based on the higher-order shear deformation theory

  • Ferruh Turan (Department of Civil Engineering, Faculty of Engineering, Ondokuz Mayis University)
  • Received : 2023.07.30
  • Accepted : 2024.09.30
  • Published : 2024.10.10

Abstract

This paper focuses on trigonometric porosity distribution to analyze its effect on the free vibration frequencies of porous orthotropic multi-layered composite plates. Three types of porosity distributions are considered. The governing equations of the free vibration response of porous orthotropic multi-layered composite plates are derived from the Hamilton's principle using higher-order shear deformation theory. The free vibration frequency relation of the problem is obtained by performing Galerkin's method. After the validation process of the relation under the available literature, a few parametric analyses are performed to observe the influence of shear deformation, porosity distribution, orthotropy, layer sequence, and different geometric properties on the frequencies.

Keywords

References

  1. Abdulrazzaq, M.A., Kadhim, Z.D., Faleh, N.M. and Moustafa, N.M. (2020), "A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads", Struct. Monit. Maintenanc, 7(1), 27-42. https://doi.org/10.12989/smm.2020.7.1.027.
  2. Ambartsumian, S. (1958), "On the theory of bending plates", Izv Otd Tech Nauk AN SSSR, 5(5), 69-77.
  3. Arshid, E., Amir, S. and Loghman, A., (2020), "Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT", Int. J. Mech. Sci., 180, 105656. https://doi.org/10.1016/j.ijmecsci.2020.105656.
  4. Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(1), 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008.
  5. Bahadir, F.C. and Turan, F. (2024), "On the vibration responses of orthotropic laminated cylindrical panels with non-uniform porosity distributions using higher-order shear deformation theory", Mech. Based Des. Struct. Machines, 1-31. https://doi.org/10.1080/15397734.2024.2352585.
  6. Chen, Z.X., Qin, B., Zhong, R. and Wang, Q.S. (2022), "Free in-plane vibration analysis of elastically restrained functionally graded porous plates with porosity distributions in the thickness and in-plane directions", Europ. Phys. J. Plus, 137(1), 1-21. https://doi.org/10.1140/epjp/s13360-021-02153-w.
  7. Demir, Y. and Turan, F. (2023a), Stability of Porous Orthotropic Cylindrical Panel Resting On Winkler Foundation via Hyperbolical Shear Deformation Theory, Bolu.
  8. Demir, Y. and Turan, F., (2023b), "Stability of porous orthotropic laminated cylindrical panels subjected to linearly varying edge compression based on shear deformation theory", Mech. Adv. Mater. Struct., 1-14. https://doi.org/10.1080/15376494.2023.2296998.
  9. Eldeeb, A., Shabana, Y., El-Sayed, T. and Elsawaf, A. (2023a), "A nontraditional method for reducing thermoelastic stresses of variable thickness rotating discs", Sci. Reports, 13(1), 13578. https://doi.org/10.1038/s41598-023-39878-w.
  10. Eldeeb, A., Shabana, Y. and Elsawaf, A. (2021), "Investigation of the thermoelastoplastic behaviors of multilayer FGM cylinders", Compos. Struct., 276, 114523. https://doi.org/10.1016/j.compstruct.2021.114523.
  11. Eldeeb, A., Shabana, Y. and Elsawaf, A. (2023b), "Thermoelastic stress mitigation and weight reduction of functionally graded multilayer nonuniform thickness disc", J. Strain Anal. Eng. Des., 58(8), 661-671. https://doi.org/10.1177/03093247231165091.
  12. Eldeeb, A., Shabana, Y.M., El-Sayed, T., Guo, L. and Elsawaf, A. (2023c), "Thermoelastic stresses alleviation for two-dimensional functionally graded cylinders under asymmetric loading", J. Thermal Stresses, 46(1), 59-74. https://doi.org/10.1080/01495739.2022.2151960.
  13. Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109.
  14. Esen, I. and Ozmen, R. (2022), "Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity", Compos. Struct., 296, 115878. https://doi.org/10.1016/j.compstruct.2022.115878.
  15. Esmaeilzadeh, M., Kadkhodayan, M., Mohammadi, S. and Turvey, G.J. (2020), "Nonlinear dynamic analysis of moving bilayer plates resting on elastic foundations", Appl. Mathem. Mech. 41(3), 439-458. https://doi.org/10.1007/s10483-020-2587-8.
  16. Fares, M.E. and Zenkour, A.M. (1999), "Buckling and free vibration of non-homogeneous composite cross-ply laminated plates with various plate theories", Compos. Struct., 44(4), 279-287. https://doi.org/10.1016/S0263-8223(98)00135-4.
  17. Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2019), "Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory", Adv. Aircraft Spacecraft Sci., 6(4), 297-314. https://doi.org/10.12989/aas.2019.6.4.297.
  18. Hung, P.T., Phung-Van, P. and Thai, C.H. (2022), "A refined isogeometric plate analysis of porous metal foam microplates using modified strain gradient theory", Compos. Struct., 289, 115467. https://doi.org/10.1016/j.compstruct.2022.115467.
  19. Kablia, A., Benferhat, R., Daouadji, T.H. and Abderezak, R. (2023), "Free vibration of various types of FGP sandwich plates with variation in porosity distribution", Struct. Eng. Mech., 85(1), 1-14. https://doi.org/10.12989/sem.2023.85.1.001.
  20. Kamranfard, M.R., Saidi, A.R. and Naderi, A. (2017), "Analytical solution for vibration and buckling of annular sectorial porous plates under in-plane uniform compressive loading", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(12), 2211-2228. https://doi.org/10.1177/0954406217716197
  21. Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multilayered laminated composite structures model with transverse shear stress continuity", Int. J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9.
  22. Khazaei, P. and Mohammadimehr, M. (2020), "Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory", Comput. Concr., 26(1), 31-52. https://doi.org/10.12989/cac.2020.26.1.031.
  23. Kumar, P. and Harsha, S.P. (2022), "Static and vibration response analysis of sigmoid function-based functionally graded piezoelectric non-uniform porous plate", J. Intell. Mater. Syst. Struct., 1045389X221077433. https://doi.org/10.1177/1045389X221077433.
  24. Kumar, R., Lal, A., Singh, B.N. and Singh, J. (2019), "Meshfree approach on buckling and free vibration analysis of porous FGM plate with proposed IHHSDT resting on the foundation", Curved Lay. Struct., 6(1), 192-211. https://doi.org/10.1515/cls-2019-0017.
  25. Kumar, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv. Nano Res., 11(1), 1-17. https://doi.org/10.12989/anr.2021.11.1.001.
  26. Lahdiri, A. and Kadri, M. (2022), "Free vibration behaviour of multi-directional functionally graded imperfect plates using 3D isogeometric approach", Earthq. Struct., 22(5), 527-538. https://doi.org/10.12989/eas.2022.22.5.527.
  27. Li, K., Wu, D., Chen, X., Cheng, J., Liu, Z., Gao, W. and Liu, M. (2018), "Isogeometric Analysis of functionally graded porous plates reinforced by graphene platelets", Compos. Struct., 204, 114-130. https://doi.org/10.1016/j.compstruct.2018.07.059.
  28. Li, S.P., Zheng, S.J. and Chen, D.J. (2020), "Porosity-dependent isogeometric analysis of bi-directional functionally graded plates", Thin-Wall. Struct., 156, 106999. https://doi.org/10.1016/j.tws.2020.106999.
  29. Magnucka-Blandzi, E. (2009), "Dynamic stability of a metal foam circular plate", J. Theoretic. Appl. Mech., 47(2), 421-433.
  30. Mahi, A., Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Mathem. Modelling, 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045.
  31. Malhari Ramteke, P., Kumar Panda, S. and Sharma, N. (2022), "Nonlinear vibration analysis of multidirectional porous functionally graded panel under thermal environment", AIAA J., 60(8), 4923-4933. https://doi.org/10.2514/1.J061635.
  32. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852.
  33. Mohammadimehr, M. and Meskini, M. (2020), "Analysis of porous micro sandwich plate: Free and forced vibration under magneto-electro-elastic loadings", Adv. Nano Res., 8(1), 69-82. https://doi.org/10.12989/anr.2020.8.1.069.
  34. Pan, H.G., Wu, Y.S., Zhou, J.N., Fu, Y.M., Liang, X. and Zhao, T.Y. (2021), "Free vibration analysis of a graphene-reinforced porous composite plate with different boundary conditions", Materials (Basel), 14(14), 3879. https://doi.org/10.3390/ma14143879.
  35. Pham, Q.H., Nguyen, P.C., Tran, V. and Nguyen-Thoi, T. (2021), "Finite element analysis for functionally graded porous nanoplates resting on elastic foundation", Steel Compos. Struct., 41(2), 149-166. https://doi.org/10.12989/scs.2021.41.2.149.
  36. Radwan, A.F. (2019), "Quasi-3D integral model for thermomechanical buckling and vibration of FG porous nanoplates embedded in an elastic medium", Int. J. Mech. Sci., 157-158 320-335. https://doi.org/10.1016/j.ijmecsci.2019.04.031.
  37. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech. Transact. Asme, 51(4), 745-752. https://doi.org/10.1115/1.3167719.
  38. Reddy, J.N. and Phan, N.D. (1985), "Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation-theory", J. Sound Vib., 98(2), 157-170. https://doi.org/10.1016/0022-460x(85)90383-9.
  39. Reissner, E. (1974), "On tranverse bending of plates, including the effect of transverse shear deformation", Int. J. Solids Struct., 11, 569-573.
  40. Reza Barati, M. (2017), "Nonlocal microstructure-dependent dynamic stability of refined porous FG nanoplates in hygrothermal environments", Europ. Phys. J. Plus, 132(10), 1-18. https://doi.org/10.1140/epjp/i2017-11686-2.
  41. Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compo. Struct., 35(5), 659-670. https://doi.org/10.12989/scs.2020.35.5.659.
  42. Saidi, A.R., Bahaadini, R. and Majidi-Mozafari, K. (2019), "On vibration and stability analysis of porous plates reinforced by graphene platelets under aerodynamical loading", Compos. Part B-Eng., 164, 778-799. https://doi.org/10.1016/j.compositesb.2019.01.074.
  43. Shi, P., Dong, C., Sun, F., Liu, W. and Hu, Q. (2018), "A new higher order shear deformation theory for static, vibration and buckling responses of laminated plates with the isogeometric analysis", Compos. Struct., 204, 342-358. https://doi.org/10.1016/j.compstruct.2018.07.080.
  44. Shojaeefard, M.H., Saeidi Googarchin, H., Ghadiri, M. and Mahinzare, M. (2017), "Micro temperature-dependent FG porous plate: Free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT", Appl. Mathem. Modelling, 50, 633-655. https://doi.org/10.1016/j.apm.2017.06.022
  45. Sobhy, M. and Zenkour, A.M. (2019), "Porosity and inhomogeneity effects on the buckling and vibration of double-FGM nanoplates via a quasi-3D refined theory", Compos. Struct., 220, 289-303. https://doi.org/10.1016/j.compstruct.2019.03.096.
  46. Soldatos, K.P. (1992), "A transverse-shear deformation-theory for homogeneous monoclinic plates", Acta Mechanica, 94(3-4), 195-220. https://doi.org/10.1007/Bf01176650.
  47. Taima, M.S., El-Sayed, T.A., Shehab, M.B., Farghaly, S.H. and Hand, R.J. (2023), "Vibration analysis of cracked beam based on Reddy beam theory by finite element method", J. Vib. Control, 29(19-20), 4589-4606. https://doi.org/10.1177/10775463221122122.
  48. Teng, Z. and Xi, P. (2021), "Analysis on free vibration and critical buckling load of a FGM porous rectangular plate", Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 39(2), 317-325. https://doi.org/10.1051/jnwpu/20213920317.
  49. Thai, H.T. and Choi, D.H. (2013a), "A simple first-order shear deformation theory for laminated composite plates", Compos. Struct., 106, 754-763. https://doi.org/10.1016/j.compstruct.2013.06.013.
  50. Thai, H.T. and Choi, D.H. (2013b), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Compos. Struct., 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019.
  51. Thang, P.T., Nguyen-Thoi, T., Lee, D., Kang, J. and Lee, J. (2018), "Elastic buckling and free vibration analyses of porous-cellular plates with uniform and non-uniform porosity distributions", Aeros. Sci. Technol., 79, 278-287. https://doi.org/10.1016/j.ast.2018.06.010.
  52. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
  53. Turan, F., (2023a), "Natural frequencies of porous orthotropic two-layered plates within the shear deformation theory", Challenge J. Struct. Mech., 9(1), 1-11. https://doi.org/10.20528/cjsmec.2023.01.001.
  54. Turan, F. (2023b), "Stability of the porous orthotropic laminated composite plates via the hyperbolic shear deformation theory", Steel Compos. Struct., 48(2), 145. https://doi.org/10.12989/scs.2023.48.2.145.
  55. Turan, F. (2023c), "Vibration analysis of porous orthotropic cylindrical panels resting on elastic foundations based on shear deformation theory", Int. J. Eng. Appl. Sci., 15(3), 125-143. https://doi.org/10.24107/ijeas.1342775.
  56. Wang, W., Xue, G. and Teng, Z. (2022), "Analysis of free vibration characteristics of porous FGM circular plates in a temperature field", J. Vib. Eng. Technol., 10(4), 1369-1380. https://doi.org/10.1007/s42417-022-00452-9.
  57. Wang, Y.Q. and Zu, J.W. (2017a), "Large-amplitude vibration of sigmoid functionally graded thin plates with porosities", Thin-Wall. Struct., 119, 911-924. https://doi.org/10.1016/j.tws.2017.08.012.
  58. Wang, Y.Q. and Zu, J.W. (2017b), "Porosity-dependent nonlinear forced vibration analysis of functionally graded piezoelectric smart material plates", Smart Mater. Struct., 26(10), 105014. https://doi.org/10.1088/1361-665X/aa8429.
  59. Xu, K., Yuan, Y. and Li, M.Y. (2019), "Buckling behavior of functionally graded porous plates integrated with laminated composite faces sheets", Steel Compos. Struct., 32(5), 633-642. https://doi.org/10.12989/scs.2019.32.5.633.
  60. Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090.
  61. Yuan, Y., Zhao, K. and Xu, K. (2019), "Enhancing the static behavior of laminated composite plates using a porous layer", Struct. Eng. Mech., 72(6), 763-774. https://doi.org/10.12989/sem.2019.72.6.763.
  62. Zenkour, A.M. and Radwan, A.F. (2016), "Free vibration analysis of multilayered composite and soft core sandwich plates resting on Winkler-Pasternak foundations", J. Sandw. Struct. Mater., 20(2), 169-190. https://doi.org/10.1177/1099636216644863.
  63. Zhong, R., Qin, B., Wang, Q., Shao, W. and Shuai, C. (2021), "Prediction of the in-plane vibration behavior of porous annular plate with porosity distributions in the thickness and radial directions", Mech. Adv. Mater. Struct., 1-25. https://doi.org/10.1080/15376494.2021.1922960.
  64. Zhou, C.L., Zhang, Z.X., Zhang, J., Fang, Y. and Tahouneh, V. (2020), "Vibration analysis of FG porous rectangular plates reinforced by graphene platelets", Steel Compos. Struct., 34(2), 215-226. https://doi.org/10.12989/scs.2020.34.2.215.