References
- Abdulrazzaq, M.A., Kadhim, Z.D., Faleh, N.M. and Moustafa, N.M. (2020), "A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads", Struct. Monit. Maintenanc, 7(1), 27-42. https://doi.org/10.12989/smm.2020.7.1.027.
- Ambartsumian, S. (1958), "On the theory of bending plates", Izv Otd Tech Nauk AN SSSR, 5(5), 69-77.
- Arshid, E., Amir, S. and Loghman, A., (2020), "Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT", Int. J. Mech. Sci., 180, 105656. https://doi.org/10.1016/j.ijmecsci.2020.105656.
- Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(1), 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008.
- Bahadir, F.C. and Turan, F. (2024), "On the vibration responses of orthotropic laminated cylindrical panels with non-uniform porosity distributions using higher-order shear deformation theory", Mech. Based Des. Struct. Machines, 1-31. https://doi.org/10.1080/15397734.2024.2352585.
- Chen, Z.X., Qin, B., Zhong, R. and Wang, Q.S. (2022), "Free in-plane vibration analysis of elastically restrained functionally graded porous plates with porosity distributions in the thickness and in-plane directions", Europ. Phys. J. Plus, 137(1), 1-21. https://doi.org/10.1140/epjp/s13360-021-02153-w.
- Demir, Y. and Turan, F. (2023a), Stability of Porous Orthotropic Cylindrical Panel Resting On Winkler Foundation via Hyperbolical Shear Deformation Theory, Bolu.
- Demir, Y. and Turan, F., (2023b), "Stability of porous orthotropic laminated cylindrical panels subjected to linearly varying edge compression based on shear deformation theory", Mech. Adv. Mater. Struct., 1-14. https://doi.org/10.1080/15376494.2023.2296998.
- Eldeeb, A., Shabana, Y., El-Sayed, T. and Elsawaf, A. (2023a), "A nontraditional method for reducing thermoelastic stresses of variable thickness rotating discs", Sci. Reports, 13(1), 13578. https://doi.org/10.1038/s41598-023-39878-w.
- Eldeeb, A., Shabana, Y. and Elsawaf, A. (2021), "Investigation of the thermoelastoplastic behaviors of multilayer FGM cylinders", Compos. Struct., 276, 114523. https://doi.org/10.1016/j.compstruct.2021.114523.
- Eldeeb, A., Shabana, Y. and Elsawaf, A. (2023b), "Thermoelastic stress mitigation and weight reduction of functionally graded multilayer nonuniform thickness disc", J. Strain Anal. Eng. Des., 58(8), 661-671. https://doi.org/10.1177/03093247231165091.
- Eldeeb, A., Shabana, Y.M., El-Sayed, T., Guo, L. and Elsawaf, A. (2023c), "Thermoelastic stresses alleviation for two-dimensional functionally graded cylinders under asymmetric loading", J. Thermal Stresses, 46(1), 59-74. https://doi.org/10.1080/01495739.2022.2151960.
- Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109.
- Esen, I. and Ozmen, R. (2022), "Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity", Compos. Struct., 296, 115878. https://doi.org/10.1016/j.compstruct.2022.115878.
- Esmaeilzadeh, M., Kadkhodayan, M., Mohammadi, S. and Turvey, G.J. (2020), "Nonlinear dynamic analysis of moving bilayer plates resting on elastic foundations", Appl. Mathem. Mech. 41(3), 439-458. https://doi.org/10.1007/s10483-020-2587-8.
- Fares, M.E. and Zenkour, A.M. (1999), "Buckling and free vibration of non-homogeneous composite cross-ply laminated plates with various plate theories", Compos. Struct., 44(4), 279-287. https://doi.org/10.1016/S0263-8223(98)00135-4.
- Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2019), "Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory", Adv. Aircraft Spacecraft Sci., 6(4), 297-314. https://doi.org/10.12989/aas.2019.6.4.297.
- Hung, P.T., Phung-Van, P. and Thai, C.H. (2022), "A refined isogeometric plate analysis of porous metal foam microplates using modified strain gradient theory", Compos. Struct., 289, 115467. https://doi.org/10.1016/j.compstruct.2022.115467.
- Kablia, A., Benferhat, R., Daouadji, T.H. and Abderezak, R. (2023), "Free vibration of various types of FGP sandwich plates with variation in porosity distribution", Struct. Eng. Mech., 85(1), 1-14. https://doi.org/10.12989/sem.2023.85.1.001.
- Kamranfard, M.R., Saidi, A.R. and Naderi, A. (2017), "Analytical solution for vibration and buckling of annular sectorial porous plates under in-plane uniform compressive loading", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(12), 2211-2228. https://doi.org/10.1177/0954406217716197
- Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multilayered laminated composite structures model with transverse shear stress continuity", Int. J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9.
- Khazaei, P. and Mohammadimehr, M. (2020), "Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory", Comput. Concr., 26(1), 31-52. https://doi.org/10.12989/cac.2020.26.1.031.
- Kumar, P. and Harsha, S.P. (2022), "Static and vibration response analysis of sigmoid function-based functionally graded piezoelectric non-uniform porous plate", J. Intell. Mater. Syst. Struct., 1045389X221077433. https://doi.org/10.1177/1045389X221077433.
- Kumar, R., Lal, A., Singh, B.N. and Singh, J. (2019), "Meshfree approach on buckling and free vibration analysis of porous FGM plate with proposed IHHSDT resting on the foundation", Curved Lay. Struct., 6(1), 192-211. https://doi.org/10.1515/cls-2019-0017.
- Kumar, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv. Nano Res., 11(1), 1-17. https://doi.org/10.12989/anr.2021.11.1.001.
- Lahdiri, A. and Kadri, M. (2022), "Free vibration behaviour of multi-directional functionally graded imperfect plates using 3D isogeometric approach", Earthq. Struct., 22(5), 527-538. https://doi.org/10.12989/eas.2022.22.5.527.
- Li, K., Wu, D., Chen, X., Cheng, J., Liu, Z., Gao, W. and Liu, M. (2018), "Isogeometric Analysis of functionally graded porous plates reinforced by graphene platelets", Compos. Struct., 204, 114-130. https://doi.org/10.1016/j.compstruct.2018.07.059.
- Li, S.P., Zheng, S.J. and Chen, D.J. (2020), "Porosity-dependent isogeometric analysis of bi-directional functionally graded plates", Thin-Wall. Struct., 156, 106999. https://doi.org/10.1016/j.tws.2020.106999.
- Magnucka-Blandzi, E. (2009), "Dynamic stability of a metal foam circular plate", J. Theoretic. Appl. Mech., 47(2), 421-433.
- Mahi, A., Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Mathem. Modelling, 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045.
- Malhari Ramteke, P., Kumar Panda, S. and Sharma, N. (2022), "Nonlinear vibration analysis of multidirectional porous functionally graded panel under thermal environment", AIAA J., 60(8), 4923-4933. https://doi.org/10.2514/1.J061635.
- Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852.
- Mohammadimehr, M. and Meskini, M. (2020), "Analysis of porous micro sandwich plate: Free and forced vibration under magneto-electro-elastic loadings", Adv. Nano Res., 8(1), 69-82. https://doi.org/10.12989/anr.2020.8.1.069.
- Pan, H.G., Wu, Y.S., Zhou, J.N., Fu, Y.M., Liang, X. and Zhao, T.Y. (2021), "Free vibration analysis of a graphene-reinforced porous composite plate with different boundary conditions", Materials (Basel), 14(14), 3879. https://doi.org/10.3390/ma14143879.
- Pham, Q.H., Nguyen, P.C., Tran, V. and Nguyen-Thoi, T. (2021), "Finite element analysis for functionally graded porous nanoplates resting on elastic foundation", Steel Compos. Struct., 41(2), 149-166. https://doi.org/10.12989/scs.2021.41.2.149.
- Radwan, A.F. (2019), "Quasi-3D integral model for thermomechanical buckling and vibration of FG porous nanoplates embedded in an elastic medium", Int. J. Mech. Sci., 157-158 320-335. https://doi.org/10.1016/j.ijmecsci.2019.04.031.
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech. Transact. Asme, 51(4), 745-752. https://doi.org/10.1115/1.3167719.
- Reddy, J.N. and Phan, N.D. (1985), "Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation-theory", J. Sound Vib., 98(2), 157-170. https://doi.org/10.1016/0022-460x(85)90383-9.
- Reissner, E. (1974), "On tranverse bending of plates, including the effect of transverse shear deformation", Int. J. Solids Struct., 11, 569-573.
- Reza Barati, M. (2017), "Nonlocal microstructure-dependent dynamic stability of refined porous FG nanoplates in hygrothermal environments", Europ. Phys. J. Plus, 132(10), 1-18. https://doi.org/10.1140/epjp/i2017-11686-2.
- Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compo. Struct., 35(5), 659-670. https://doi.org/10.12989/scs.2020.35.5.659.
- Saidi, A.R., Bahaadini, R. and Majidi-Mozafari, K. (2019), "On vibration and stability analysis of porous plates reinforced by graphene platelets under aerodynamical loading", Compos. Part B-Eng., 164, 778-799. https://doi.org/10.1016/j.compositesb.2019.01.074.
- Shi, P., Dong, C., Sun, F., Liu, W. and Hu, Q. (2018), "A new higher order shear deformation theory for static, vibration and buckling responses of laminated plates with the isogeometric analysis", Compos. Struct., 204, 342-358. https://doi.org/10.1016/j.compstruct.2018.07.080.
- Shojaeefard, M.H., Saeidi Googarchin, H., Ghadiri, M. and Mahinzare, M. (2017), "Micro temperature-dependent FG porous plate: Free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT", Appl. Mathem. Modelling, 50, 633-655. https://doi.org/10.1016/j.apm.2017.06.022
- Sobhy, M. and Zenkour, A.M. (2019), "Porosity and inhomogeneity effects on the buckling and vibration of double-FGM nanoplates via a quasi-3D refined theory", Compos. Struct., 220, 289-303. https://doi.org/10.1016/j.compstruct.2019.03.096.
- Soldatos, K.P. (1992), "A transverse-shear deformation-theory for homogeneous monoclinic plates", Acta Mechanica, 94(3-4), 195-220. https://doi.org/10.1007/Bf01176650.
- Taima, M.S., El-Sayed, T.A., Shehab, M.B., Farghaly, S.H. and Hand, R.J. (2023), "Vibration analysis of cracked beam based on Reddy beam theory by finite element method", J. Vib. Control, 29(19-20), 4589-4606. https://doi.org/10.1177/10775463221122122.
- Teng, Z. and Xi, P. (2021), "Analysis on free vibration and critical buckling load of a FGM porous rectangular plate", Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 39(2), 317-325. https://doi.org/10.1051/jnwpu/20213920317.
- Thai, H.T. and Choi, D.H. (2013a), "A simple first-order shear deformation theory for laminated composite plates", Compos. Struct., 106, 754-763. https://doi.org/10.1016/j.compstruct.2013.06.013.
- Thai, H.T. and Choi, D.H. (2013b), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Compos. Struct., 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019.
- Thang, P.T., Nguyen-Thoi, T., Lee, D., Kang, J. and Lee, J. (2018), "Elastic buckling and free vibration analyses of porous-cellular plates with uniform and non-uniform porosity distributions", Aeros. Sci. Technol., 79, 278-287. https://doi.org/10.1016/j.ast.2018.06.010.
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
- Turan, F., (2023a), "Natural frequencies of porous orthotropic two-layered plates within the shear deformation theory", Challenge J. Struct. Mech., 9(1), 1-11. https://doi.org/10.20528/cjsmec.2023.01.001.
- Turan, F. (2023b), "Stability of the porous orthotropic laminated composite plates via the hyperbolic shear deformation theory", Steel Compos. Struct., 48(2), 145. https://doi.org/10.12989/scs.2023.48.2.145.
- Turan, F. (2023c), "Vibration analysis of porous orthotropic cylindrical panels resting on elastic foundations based on shear deformation theory", Int. J. Eng. Appl. Sci., 15(3), 125-143. https://doi.org/10.24107/ijeas.1342775.
- Wang, W., Xue, G. and Teng, Z. (2022), "Analysis of free vibration characteristics of porous FGM circular plates in a temperature field", J. Vib. Eng. Technol., 10(4), 1369-1380. https://doi.org/10.1007/s42417-022-00452-9.
- Wang, Y.Q. and Zu, J.W. (2017a), "Large-amplitude vibration of sigmoid functionally graded thin plates with porosities", Thin-Wall. Struct., 119, 911-924. https://doi.org/10.1016/j.tws.2017.08.012.
- Wang, Y.Q. and Zu, J.W. (2017b), "Porosity-dependent nonlinear forced vibration analysis of functionally graded piezoelectric smart material plates", Smart Mater. Struct., 26(10), 105014. https://doi.org/10.1088/1361-665X/aa8429.
- Xu, K., Yuan, Y. and Li, M.Y. (2019), "Buckling behavior of functionally graded porous plates integrated with laminated composite faces sheets", Steel Compos. Struct., 32(5), 633-642. https://doi.org/10.12989/scs.2019.32.5.633.
- Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090.
- Yuan, Y., Zhao, K. and Xu, K. (2019), "Enhancing the static behavior of laminated composite plates using a porous layer", Struct. Eng. Mech., 72(6), 763-774. https://doi.org/10.12989/sem.2019.72.6.763.
- Zenkour, A.M. and Radwan, A.F. (2016), "Free vibration analysis of multilayered composite and soft core sandwich plates resting on Winkler-Pasternak foundations", J. Sandw. Struct. Mater., 20(2), 169-190. https://doi.org/10.1177/1099636216644863.
- Zhong, R., Qin, B., Wang, Q., Shao, W. and Shuai, C. (2021), "Prediction of the in-plane vibration behavior of porous annular plate with porosity distributions in the thickness and radial directions", Mech. Adv. Mater. Struct., 1-25. https://doi.org/10.1080/15376494.2021.1922960.
- Zhou, C.L., Zhang, Z.X., Zhang, J., Fang, Y. and Tahouneh, V. (2020), "Vibration analysis of FG porous rectangular plates reinforced by graphene platelets", Steel Compos. Struct., 34(2), 215-226. https://doi.org/10.12989/scs.2020.34.2.215.