References
- Arora, R.K. and Banerjee, S. (2023), "Reliability-based approach for fragility assessment of bridges under floods", Struct. Eng. Mech., 88(4), 311. https://doi.org/10.12989/sem.2023.88.4.311.
- Bates, S.J., Sienz, J. and Langley, D.S. (2003), "Formulation of the Audze-Eglais uniform Latin hypercube design of experiments", Adv. Eng. Softw., 34(8), 493-506. https://doi.org/10.1016/S0965-9978(03)00042-5.
- Chen, R.B., Hsieh, D.N., Hung, Y. and Wang, W. (2013), "Optimizing latin hypercube designs by particle swarm", Stat. Comput., 23(5), 663-676. https://doi.org/10.1007/s11222-012-9363-3.
- de Angelis, M., Patelli, E. and Beer, M. (2015), "Advanced line sampling for efficient robust reliability analysis", Struct. Saf., 52, 170-182. https://doi.org/10.1016/j.strusafe.2014.10.002.
- Etedali, S. (2022), "Probabilistic study on buildings with MTMD system in different seismic performance levels", Struct. Eng. Mech., 81(4), 429-441. https://doi.org/10.12989/sem.2022.81.4.429.
- Ghazaan, M.I. and Saadatmand, F. (2022), "A new performance measure approach with an adaptive step length selection method hybridized with decoupled reliability-based design optimization", Struct., 44(1), 977-987. https://doi.org/10.1016/j.istruc.2022.08.067.
- Grosso, A., Jamali, A. and Locatelli, M. (2009), "Finding maximin latin hypercube designs by iterated local search heuristics", Eur. J. Oper. Res., 197(2), 541-547. https://doi.org/10.1016/j.ejor.2008.07.028.
- Hadidi, A., Azar, B.F. and Rafiee, A. (2017), "Efficient response surface method for high-dimensional structural reliability analysis", Struct. Saf., 68, 15-27. https://doi.org/10.1016/j.strusafe.2017.03.006.
- Johnson, M.E., Moore, L.M. and Ylvisaker, D. (1990), "Minimax and maximin distance designs", J. Stat. Plann. Infer., 26(2), 131-148. https://doi.org/10.1016/0378-3758(90)90122-B.
- Khodam, A., Farajzadeh, M.S. and Shayanfar, M. (2023), "A new hybrid method for reliability-based optimal structural design with discrete and continuous variables", Struct. Eng. Mech., 85(3), 369-379. https://doi.org/10.12989/sem.2023.85.3.369.
- Liefvendahl, M. and Stocki, R. (2006), "A study on algorithms for optimization of Latin hypercubes", J. Stat. Plann. Infer., 136(9), 3231-3247. https://doi.org/10.1016/j.jspi.2005.01.007.
- McKay, M., Beckman, R. and Conover, W. (1979), "Acomparisonof three methodsforselecting valuesofinputvariablesinthe analysisofoutputfrom acomputercode", Technometrics, 21(2), 239-245. https://doi.org/10.1080/00401706.1979.10489755.
- Nguyen, T.T. and Dang, V.H. (2022), "Structural reliability analysis using temporal deep learning-based model and importance sampling", Struct. Eng. Mech., 84(3), 323. https://doi.org/10.12989/sem.2022.84.3.323.
- Nie, J. and Ellingwood, B.R. (2000), "Directional methods for structural reliability analysis", Struct. Saf., 22(3), 233-249. https://doi.org/10.1016/S0167-4730(00)00014-X.
- Pan, G., Ye, P. and Wang, P. (2014), "A novel Latin hypercube algorithm via translational propagation", Scientif. World J., 2014(1), 163949. https://doi.org/10.1155/2014/163949.
- Pholdee, N. and Bureerat, S. (2015), "An efficient optimum Latin hypercube sampling technique based on sequencing optimisation using simulated annealing", Int. J. Syst. Sci., 46(10), 1780-1789. https://doi.org/10.1080/00207721.2013.835003.
- Rosenbrock, H. (1960), "An automatic method for finding the greatest or least value of a function", Comput. J., 3(3), 175-184. https://doi.org/10.1093/comjnl/3.3.175.
- Shang, X., Chao, T., Ma, P. and Yang, M. (2019), "An efficient local search-based genetic algorithm for constructing optimal Latin hypercube design", Eng. Optimiz., https://doi.org/10.1080/0305215X.2019.1584618.
- Shields, M.D. and Zhang, J. (2016), "The generalization of Latin hypercube sampling", Reliab. Eng. Syst. Saf., 148, 96-108. https://doi.org/10.1016/j.ress.2015.12.002.
- Sun, Y., Meng, X., Long, T. and Wu, Y. (2020), "A fast optimal Latin hypercube design method using an improved translational propagation algorithm", Eng. Optim., 52(7), 1244-1260. https://doi.org/10.1080/0305215X.2019.1642881.
- Tang, B. (1993), "Orthogonal array-based Latin hypercubes", J. Am. Stat. Assoc., 88(424), 1392-1397. https://doi.org/10.1080/01621459.1993.10476423.
- Xu, J. and Dang, C. (2019), "A novel fractional moments-based maximum entropy method for high-dimensional reliability analysis", Appl. Math. Model., 75, 749-768. https://doi.org/10.1016/j.apm.2019.06.037.
- Yaseen, Z.M., Aldlemy, M.S. and Oukati Sadegh, M. (2020), "Non-gradient probabilistic Gaussian global-best harmony search optimization for first-order reliability method", Eng. Comput., 36(4), 1189-1200. https://doi.org/10.1007/s00366-019-00756-7.
- Zhang, Y., Sun, Z., Yan, Y., Yu, Z. and Wang, J. (2020), "A novel reliability analysis method based on Gaussian process classification for structures with discontinuous response", Struct. Eng. Mech., 75(6), 771-784. https://doi.org/10.12989/sem.2020.75.6.771.
- Zhang, Z., Tao, M., Wang, F., Yang, Y. and Ke, L. (2023), "Study on static and dynamic reliability of main girder of cable-stayed bridge based on subset simulation method", KSCE J. Civil Eng., 27(2), 657-669. https://doi.org/10.1007/s12205-022-0984-6.
- Zhu, H., Liu, L., Long, T. and Peng, L. (2012), "A novel algorithm of maximin Latin hypercube design using successive local enumeration", Eng. Optim., 44(5), 551-564. https://doi.org/10.1080/0305215X.2011.591790.