DOI QR코드

DOI QR Code

Mode I crack propagation analisys using strain energy minimization and shape sensitivity

  • Beatriz Ferreira Souza (Department of Civil Engineering, University of Brasilia (UnB), Campus Darcy Ribeiro) ;
  • Gilberto Gomes (Department of Civil Engineering, University of Brasilia (UnB), Campus Darcy Ribeiro)
  • Received : 2024.04.18
  • Accepted : 2024.09.19
  • Published : 2024.10.10

Abstract

The crack propagation path can be considered as a boundary problem in which the crack advances towards the interior of the domain. Consequently, this poses an optimization problem wherein the local crack-growth direction angle can be treated as a design variable. The advantage of this approach is that the continuous minimization of strain energy naturally leads to the mode I propagation path. Furthermore, this procedure does not rely on the precise characterization of the stress field at the crack tip and is independent of stress intensity factors. This paper proposes an algorithm based on internal point exploration as well as shape sensitivity optimization and strain energy minimization to determine the crack propagation direction. To implement this methodology, the algorithm utilizes a modeling GUI associated with an academic analysis program based on the Dual Boundary Elements Method and determines the propagation path by exploiting the elastic strain energy at points in the domain that are candidates to be included in the boundary. The sensitivity of the optimal solution is also assessed in the vicinity of the optimum point, ensuring the stability and robustness of the solution. The results obtained demonstrate that the proposed methodology accurately predicts the crack propagation direction in Mode I opening for a single crack (lateral and central). Furthermore, robust optimal solutions were achieved in all cases, indicating that the optimal solution was not highly sensitive to changes in the design variable in the vicinity of the optimal point.

Keywords

Acknowledgement

This study was financed in part by the Coordination for the Improvement of Higher Education Personnel (CAPES) and Graduate Program in Structures and Civil Construction at the University of Brasilia.

References

  1. Anderson, T.L. (2005), Fracture Mechanics: Fundamentals and Applications, 3 Edition, Taylor & Francis.
  2. Armentani, E. and Citarella, R. (2006), "DBEM and FEM analysis on non-linear multiple crack propagation in an aeronautic doubler-skin assembly", Int. J. Fatig., 28(5-6), 598-608. https://doi.org/10.1016/j.ijfatigue.2005.06.050.
  3. Bouchard, P.O., Bay, F. and Chastel, Y. (2003), "Numerical modelling of crack propagation: Automatic remeshing and comparison of different criteria", Comput. Meth. Appl. Mech. Eng., 192(35-36), 3887-3908. https://doi.org/10.1016/S0045-7825(03)00391-8.
  4. Brebbia, C.A. (2017), "The birth of the boundary element method from conception to application", Eng. Anal. Bound. Elem., 77, iii-x. https://doi.org/10.1016/j.enganabound.2016.12.001.
  5. Chen, J.T., Lin, S.R. and Chen, K.H. (2005), "Degenerate scale problem when solving Laplace's equation by BEM and its treatment", Int. J. Numer. Meth. Eng., 62(2), 233-261. https://doi.org/10.1002/nme.1184.
  6. Cheng, A.H.D. and Cheng, D. (2005), "Heritage and early history of the boundary element method", Eng. Anal. Bound. Elem., 29, 268-302. https://doi.org/10.1016/j.enganabound.2004.12.001.
  7. Delgado Neto, A.M., Guimaraes, D.C. and Gomes, G. (2016), "BemLab2d: Gui modeling, visualization and analysis with boundary element-an application in elastostatic problems", Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering.
  8. Dowling, N.E. (2012), Mechanical Behavior of Materials, Engineering Methods for Deformation, Fracture, and Fatigue, 4 Edition, Pearson Education.
  9. Duarte, C.A., Hamzeh, O.N., Liszka, T.J. and Tworzydlo, W.W. (2001), "A generalized finite element method for the simulation of three-dimensional dynamic crack propagation", Comput. Meth. Appl. Mech. Eng., 190(15), 2227-2262. https://doi.org/10.1016/S0045-7825(00)00233-4.
  10. Erdogan, F. and Sih, G.C. (1963), "On the crack extension in plates under plane loading and transverse shear", J. Fluid. Eng. Trans. ASME, 85(4), 519-525. https://doi.org/10.1115/1.3656897.
  11. Gomes, G. and Miranda, A. (2018), "Analysis of crack growth problems using the object-oriented program bemcracker2D", Frattura ed Integrita Strutturale, 12(45), 67-85. https://doi.org/10.3221/IGF-ESIS.45.06.
  12. Gomes, G., Delgado Neto, A.M. and Wrobel, L.C. (2016a), "Modelling and 2D cracks view using dual boundary integral equation", Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering.
  13. Gomes, G., Oliveira, T.A.A., Neto, A.M.D. and Bezerra, L.M. (2021), "A new methodology to predict damage tolerance based on compliance via global-local analysis", Frattura ed Integrita Strutturale, 15(58), 211-230. https://doi.org/10.3221/IGFESIS.58.16.
  14. Gomes, G., Portela, A., Emidio, B. and Lustosa, I. (2016b), "Analysis of dual boundary element in shape optimization", IOSR J. Mech. Civil Eng., 13(03), 127-141. https://doi.org/10.9790/1684-130304127141.
  15. Gomes, G.F., da Cunha, S.S. and Ancelotti, A.C. (2019), "A sunflower optimization (SFO) algorithm applied to damage identification on laminated composite plates", Eng. Comput., 35(2), 619-626. https://doi.org/10.1007/s00366-018-0620-8.
  16. Holland, J.H. (1975), Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to biology, control, and Artificial Intelligence, U Michigan Press, Oxford, England.
  17. Hussain, M., Pu, S. and Underwood, J. (1974), "Strain energy release rate for a crack under combined Mode I and Mode II", National Symposium on Fracture Mechanics, 2-2-27.
  18. Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of ICNN'95-International Conference on Neural Networks, 4, 1942-1948.
  19. Kumar, P. (2009), Elements of Fracture Mechanics, McGraw-Hill, 7 Edition, India.
  20. Leite, P.G. and Gomes, G. (2019), "Numerical simulation of fatigue crack propagation in mixed-mode (I+II) using the program BemCracker2D", Int. J. Struct. Integr., 10(4), 497-514. https://doi.org/10.1108/IJSI-04-2018-0022.
  21. Leonel, E.D. and Venturini, W.S. (2011), "Multiple random crack propagation using a boundary element formulation", Eng. Fract. Mech., 78(6), 1077-1090. https://doi.org/10.1016/j.engfracmech.2010.11.012.
  22. Liu, H., Li, B., Yang, Z. and Hong, J. (2017), "Topology optimization of stiffened plate/shell structures based on adaptive morphogenesis algorithm", J. Manuf. Syst., 43, 375-384. https://doi.org/10.1016/j.jmsy.2017.02.002.
  23. Marchi, C.H. and Silva, A.F. (2005), "Multi-dimensional discretization error estimation for convergent apparent order", J. Brazil. Soc. Mech. Sci. Eng., 27(4), 432-439. https://doi.org/10.1590/S1678-58782005000400012.
  24. Mi, Y. and Aliabadi, M.H. (1992), "Dual boundary element method for three-dimensional fracture mechanics analysis", Eng. Anal. Bound. Elem., 10(2), 161-171. https://doi.org/10.1016/0955-7997(92)90047-B.
  25. Mi, Y. and Aliabadi, M.H. (1994), "Three-dimensional crack growth simulation using BEM", Comput. Struct., 52(5), 871-878. https://doi.org/10.1016/0045-7949(94)90072-8.
  26. Mirjalili, S. and Lewis, A. (2016), "The whale optimization algorithm", Adv. Eng. Softw., 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008.
  27. Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014), "Grey wolf optimizer", Adv. Eng. Softw., 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
  28. Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J.
  29. Oliveira, T.A., Gomes, G. and Evangelista, F. (2019), "Multiscale aircraft fuselage fatigue analysis by the dual boundary element method", Eng. Anal. Bound. Elem., 104, 107-119. https://doi.org/10.1016/j.enganabound.2019.03.032.
  30. Pereira, J.L.J., Francisco, M.B., Diniz, C.A., Oliver, G.A., Cunha Jr, S.S. and Gomes, G.F. (2021), "Lichtenberg algorithm: A novel hybrid physics-based meta-heuristic for global optimization", Exp. Syst. Appl., 170, 114522. https://doi.org/10.1016/j.eswa.2020.114522.
  31. Portela, A., Aliabadi, M.H. and Rooke, D.P. (1992), "The dual boundary element method: Effective implementation for crack problems", Int. J. Numer. Meth. Eng., 33(19), 1269-1287. https://doi.org/10.1002/nme.1620330611.
  32. Portela, A., Aliabadi, M.H. and Rooke, D.P. (1993), "Dual boundary element incremental analysis of crack propagation", Comput. Struct., 46(2), 237-247. https://doi.org/10.1016/0045-7949(93)90189-K.
  33. Prasad, N.N., Aliabadi, M.H. and Rooke, D.P. (1994), "The dual boundary element method for thermoelastic crack problems", Int. J. Fract., 66(3), 255-272. https://doi.org/10.1007/BF00042588.
  34. Sih, G.C. (1974), "Strain-energy-density factor applied to mixed mode crack problems", Int. J. Fract., 10(3), 305-321. https://doi.org/10.1007/BF00035493.
  35. Simpson, R. and Trevelyan, J. (2011), "A partition of unity enriched dual boundary element method for accurate computations in fracture mechanics", Comput. Meth. Appl. Mech. Eng., 200(1-4), 1-10. https://doi.org/10.1016/j.cma.2010.06.015.
  36. Sokolowski, J. and Zolesio, J. (1992), "Introduction to shape optimization-shape sensitivity analysis", Springer Series in Computacional Mathematics, Berlin, Heidelberg.
  37. Souza, B.F., Anflor, C.T.M. and Jorge, A.B. (2021a), "Application of modified adaptive morphogenesis and robust optimization algorithms for thin stiffened plates", Eng. Comput., 38, 3391-3407. https://doi.org/10.1007/s00366-021-01465-w.
  38. Souza, B.F., Fernandes, D., Anflor, C. and de Morais, M.V.G. (2021b), "Application of discretization error estimators in stepped column buckling problems", Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria, 37(4), 1-12.
  39. Storn, R. and Price, K. (1997), "Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces", J. Glob. Optimiz., 38(11), 341-359. https://doi.org/10.1023/A:1008202821328.
  40. Tafreshi, A. (2011), "Simulation of crack propagation in anisotropic structures using the boundary element shape sensitivities and optimisation techniques", Eng. Anal. Bound. Elem., 35(8), 984-995. https://doi.org/10.1016/j.enganabound.2011.03.006.
  41. Yang, X.S. (2010), "A new metaheuristic Bat-inspired algorithm", Stud. Comput. Intel., 284, 65-74. https://doi.org/10.1007/978-3-642-12538-6_6.
  42. Yang, X.S. (2012), "Flower pollination algorithm for global optimization", Unconvent. Comput. Nat. Comput., 7445, 240-249. https://doi.org/10.1007/978-3-642-32894-7_27.