DOI QR코드

DOI QR Code

Using cellulose acetate fibers to product eco-friendly concrete; a new strategy to reduce environmental pollution

  • Hamid Reza Ahmadi (Department of Civil Engineering, Faculty of Engineering, University of Maragheh) ;
  • Mehdi Rezaie (Department of Civil Engineering, Faculty of Engineering, University of Maragheh) ;
  • Taher Khojasteh Zinjanab (Department of Civil Engineering, Faculty of Engineering, University of Maragheh)
  • 투고 : 2024.05.25
  • 심사 : 2024.09.05
  • 발행 : 2024.10.10

초록

Discarded cigarette butts in the environment have caused significant pollution. Therefore, providing solutions to address these environmental issues is of great importance. Concrete is known as one of the most widely used materials around the world. Hence, this study investigates the feasibility of using cigarette butts to product concrete. For this purpose, cellulose acetate fibers obtained from cigarette butt filters were added to silica fume concrete in 10 different volume ratios. Then, the mechanical properties of the concrete samples, including compressive strength, Brazilian tensile strength, and flexural tensile strength, were examined. Based on the results, adding fibers to silica fume concrete improved the mechanical properties of the concrete. Among the 10 mixing designs, adding 0.2% by volume of fibers to silica fume concrete yielded the highest compressive and tensile strengths. In other words, adding 0.2% by volume of fibers resulted in a 16% and 34% increase in compressive strength and a 70% and 38% increase in Brazilian tensile strength at 7 and 28 days, respectively, compared to the state without cellulose acetate fibers. Additionally, the flexural tensile stress capacity increased by 56%. Furthermore, the vertical deformation tolerance in beam specimens increased by 287%, and the energy absorption capacity of the concrete beam also significantly increased. Consequently, along with the significant improvement in the mechanical properties of concrete, this study proposes a new and practicalstrategy to addressthe environmental issues caused by waste cigarette butts.

키워드

참고문헌

  1. Afrakoti, M.T.P., Choobbasti, A.J., Ghadakpour, M. and Kutanaei, S.S. (2020), "Investigation of the effect of the coal wastes on the mechanical properties of the cement-treated sandy soil", Constr. Build. Mater., 239, 117848. https://doi.org/10.1016/j.conbuildmat.2019.117848.
  2. Aitcin, P.C. (1998), High Performance Concrete, CRC Press, UK.
  3. American Concrete Institute. Committee 211. (1991), Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete: (ACI 211.1-91), American Concrete Institute.
  4. Assres, J. and Abate, B. (2018), "Reprocessing waste cigarette butts into usable materials", Int. J. Textile Eng. Proc., 4(3), 6-11.
  5. ASTM C33 (2003), ASTM C33 Standard Specifications for Concrete Aggregates, ASTM Standard Book.
  6. ASTM C78 (2016), Standard Test Method for Flexural Strength of Concrete, ASTM International, West Conshohocken, Pennsylvania, USA.
  7. ASTM, A.S.T.M. (2005), Standard Specification for Silica Fume used in Cementitious Mixtures, ASTM International, West Conshohocken, PA, USA.
  8. ASTM, C. (2001), ASTM C39: Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM international West Conshohocken, PA, USA.
  9. ASTM, C. (2011), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, C496/C496M-11.
  10. ASTM-C494-05, American Society for Testing and Material (2005), Standard Specification for Chemical Admixtures for Concrete.
  11. Badarloo, B., Lehner, P. and Bakhtiari Doost, R. (2022), "Mechanical properties and gamma radiation transmission rate of heavyweight concrete containing barite aggregates", Mater., 15(6), 2173. https://doi.org/10.3390/ma15062173.
  12. Badarloo, B., Lehner, P., Koubova, L. and Pirizadeh, M. (2023), "Correlation study of physical and mechanical properties of concretes with crushed LCD glass", J. Clean. Prod., 385, 135756. https://doi.org/10.1016/j.jclepro.2022.135756.
  13. Bentz, D.P., Garboczi, E.J., Haecker, C.J. and Jensen, O.M. (1999), "Effects of cement particle size distribution on performance properties of Portland cement-based materials", Cement Concrete Res., 29(10), 1663-1671. https://doi.org/10.1016/S0008-8846(99)00163-5.
  14. Berke, N.S. (1988), "Microsilica and concrete durability", Transp. Res. Record, 1204, 21-26.
  15. Conradi, M. and Sanchez-Moyano, J.E. (2022), "Toward a sustainable circular economy for cigarette butts, the most common waste worldwide on the coast", Sci. Total Environ., 847, 157634. https://doi.org/10.1016/j.scitotenv.2022.157634.
  16. Heniegal, A.M., Amin, M., Nagib, S.H., Youssef, H. and Agwa, I.S. (2023), "Effect of black sand as a partial replacement for fine aggregate on properties as a novel radiation shielding of high-performance heavyweight concrete", Struct. Eng. Mech., 87(5), 499-516. https://doi.org/10.12989/sem.2023.87.5.499.
  17. Khan, M.I. and Siddique, R. (2011), "Utilization of silica fume in concrete: Review of durability properties", Resour. Conserv. Recycl., 57, 30-35. https://doi.org/10.1016/j.resconrec.2011.09.016.
  18. Khorshidi, N., Ansari, M. and Bayat, M. (2014), "An investigation of water magnetization and its influence on some concrete specificities like fluidity and compressive strength", Comput. Concrete, 13(5), 649-657. https://doi.org/10.12989/cac.2014.13.5.649.
  19. Kurmus, H. and Mohajerani, A. (2020), "The toxicity and valorization options of cigarette butts", Waste Manage., 104, 104-118. https://doi.org/10.1016/j.wasman.2020.01.011.
  20. Kurmus, H. and Mohajerani, A. (2021), "Energy savings, thermal conductivity, micro and macro structural analysis of fired clay bricks incorporating cigarette butts", Constr. Build. Mater., 283, 122755. https://doi.org/10.1016/j.conbuildmat.2021.122755.
  21. Kutanaei, S.S., Afrakoti, M.T.P. and Choobbasti, A.J. (2021), "Effect of coal waste on grain failure of cement-stabilized sand due to compaction", Arab. J. Geosci., 14(12), 1105. https://doi.org/10.1007/s12517-021-07392-w.
  22. Luo, T., Zhang, Z., Zhang, J., Sun, C. and Yanjun, J.I. (2019), "Experimental study on uniaxial compressive strength of concrete incorporated with cigarette butts", IOP Conf. Ser.: Earth Environ. Sci., 233(5), 052030. https://doi.org/10.1088/1755-1315/233/5/052030.
  23. Mohajerani, A., Kadir, A.A. and Larobina, L. (2016), "A practical proposal for solving the world's cigarette butt problem: Recycling in fired clay bricks", Waste Manage., 52, 228-244. https://doi.org/10.1016/j.wasman.2016.03.012.
  24. Mohajerani, A., Tanriverdi, Y., Nguyen, B.T., Wong, K.K., Dissanayake, H.N., Johnson, L., ... & Rezaei, A. (2017), "Physico-mechanical properties of asphalt concrete incorporated with encapsulated cigarette butts", Constr. Build. Mater., 153, 69-80. https://doi.org/10.1016/j.conbuildmat.2017.07.091.
  25. Mostafaei, H., Badarloo, B., Chamasemani, N.F., Rostampour, M. A. and Lehner, P. (2023), "Investigating the effects of concrete Mix design on the environmental impacts of reinforced concrete structures", Build., 13(5), 1313. https://doi.org/10.3390/buildings13051313.
  26. Nemati, K.M. (1997), "Fracture analysis of concrete using scanning electron microscopy", Scann., 19(6), 426-430. https://doi.org/10.1002/sca.4950190605.
  27. Novotny, T.E., Lum, K., Smith, E., Wang, V. and Barnes, R. (2009), "Cigarettes butts and the case for an environmental policy on hazardous cigarette waste", Int. J. Environ. Res. Public Hlth., 6(5), 1691-1705. https://doi.org/10.3390/ijerph6051691.
  28. Powers, T.C. (1958), "Structure and physical properties of hardened Portland cement paste", J. Am. Ceramic Soc., 41(1), 1-6. https://doi.org/10.1111/j.1151-2916.1958.tb13494.x.
  29. Qin, L., Li, X., Zhou, J., Liang, Y., Ou, W. and Chen, Z. (2023), "Flexural behavior of reinforced recycled aggregates concrete beam after exposed to high temperatures", Struct. Eng. Mech., 87(3), 201-210. https://doi.org/10.12989/sem.2023.87.3.201.
  30. Rahman, M.T., Mohajerani, A. and Giustozzi, F. (2020), "Possible recycling of cigarette butts as fiber modifier in bitumen for asphalt concrete", Mater., 13(3), 734. https://doi.org/10.3390/ma13030734.
  31. Salvador, R.P., Cavalaro, S.H., Segura, I., Figueiredo, A.D. and Perez, J. (2016), "Early age hydration of cement pastes with alkaline and alkali-free accelerators for sprayed concrete", Constr. Build. Mater., 111, 386-398. https://doi.org/10.1016/j.conbuildmat.2016.02.101.
  32. Shafigh, P., Aslam, M. and Yap, S.P. (2021), "Shear behaviour of lightweight aggregate concrete beams using palm-oil by-products as coarse aggregate", Struct. Eng. Mech., 79(2), 141-155. https://doi.org/10.12989/sem.2021.79.2.141.
  33. Shah, A., Jan, I.U., Khan, R.U. and Qazi, E.U. (2013), "Experimental investigation on the use of recycled aggregates in producing concrete", Struct. Eng. Mech., 47(4), 545-557. https://doi.org/10.12989/sem.2013.47.4.545.
  34. Shelote, K.M., Bala, A. and Gupta, S. (2023), "An overview of mechanical, permeability, and thermal properties of silica fume concrete using bibliographic survey and building information modelling", Constr. Build. Mater., 385, 131489. https://doi.org/10.1016/j.conbuildmat.2023.131489.
  35. Smith, E.A. and McDaniel, P.A. (2011), "Covering their butts: Responses to the cigarette litter problem", Tobacco Control, 20(2), 100-106. https://doi.org/10.1136/tc.2010.036491.
  36. Soleimani, M. and Shahandashti, M. (2017), "Comparative process-based life-cycle assessment of bioconcrete and conventional concrete", J. Eng., Des. Technol., 15(5), 667-688. https://doi.org/10.1108/JEDT-04-2017-0033.
  37. Standard, A.S.T.M. (2009), C150: Standard Specification for Portland Cement, Annual Book of ASTM Standards.
  38. Stigler Granados, P., Fulton, L., Nunez Patlan, E., Terzyk, M. and Novotny, T.E. (2019), "Global health perspectives on cigarette butts and the environment", Int. J. Environ. Res. Public Hlth., 16(10), 1858. https://doi.org/10.3390/ijerph16101858.
  39. Stutzman, P. (2004), "Scanning electron microscopy imaging of hydraulic cement microstructure", Cement Concrete Compos., 26(8), 957-966. https://doi.org/10.1016/j.cemconcomp.2004.02.043.
  40. Uzbas, B. and Aydin, A.C. (2020), "Microstructural analysis of silica fume concrete with scanning electron microscopy and X-ray diffraction", Eng., Technol. Appl. Sci. Res., 10(3), 5845-5850. https://doi.org/10.48084/etasr.3288.
  41. Yuan, Q., Mohajerani, A., Kristoforus, A., Kurmus, H., Chowdhury, U., Robert, D., ... & Tran, P. (2021), "Recycling cigarette butts in ceramic tiles", Build., 12(1), 17. https://doi.org/10.3390/buildings12010017.
  42. Zhu, J., Sun, H., Malone, C., Ziehl, P., Ai, L., Bayat, M., ... & Giannini, E. (2021), "Online monitoring system for concrete structures affected by alkali-silica reaction (No. DOE-UNL-NE8544)", University of Nebraska, Lincoln, NE, USA.