DOI QR코드

DOI QR Code

Lord-Shulman based generalized thermoelasticity of piezoelectric layer using finite element method

  • F. Kheibari (Department of Mechanical Engineering, Shahrekord University) ;
  • Y. Tadi Beni (Faculty of Engineering, Shahrekord University) ;
  • Y. Kiani (Faculty of Engineering, Shahrekord University)
  • Received : 2023.03.23
  • Accepted : 2024.09.10
  • Published : 2024.10.10

Abstract

In the present work generalized thermoelasticity of a piezoelectric layer is analysed under various shock loading conditions. The generalized thermoelasticity is based on the Lord-Shulman model. The governing equations are solved in the space domain using the finite element method and for solving the equations in the time domain the Newmark method is used. Two kinds of shock loading, temperature shock, and stress shock loading are considered. The results are compared with same results presented in other works and a very close agreement is observed. Finally, the results for each loading condition are presented in various locations and times.

Keywords

References

  1. Abd-alla, A.E.N., Giorgio, I., Galantucci, L., Hamdan, A.M. and Vescovo, D.D. (2016), "Wave reflection at a free interface in an anisotropic pyroelectric medium with nonclassical thermoelasticity", Continuum. Mech. Thermodyn., 28, 67-84. https://doi.org/10.1007/s00161-014-0400-7. 
  2. Alihemmati, J. and Beni, Y.T. (2022a), "Generalized thermoelasticity of microstructures: Lord-Shulman theory with modified strain gradient theory", Mech. Mater., 172, 104412. https://doi.org/10.1016/j.mechmat.2022.104412. 
  3. Alihemmati, J. and Beni, Y.T. (2022b), "Size dependent generalized thermoelasticity: Green-Lindsay theory with modified strain gradient theory", Wave. Random Complex Media, 1-25. https://doi.org/10.1080/17455030.2022.2105985. 
  4. Alihemmati, J., Beni, Y.T. and Kiani, Y. (2021), "LS-based and GL-based thermoelasticity in two dimensional bounded media: A Chebyshev collocation analysis", J. Therm. Stress., 44(7), 883-898. https://doi.org/10.1080/01495739.2021.1922112. 
  5. Alihemmati, J., Tadi Beni, Y. and Kiani, Y. (2021), "Application of Chebyshev collocation method to unified generalized thermoelasticity of a finite domain", J. Therm. Stress., 44(5), 547-565. https://doi.org/10.1080/01495739.2020.1867941. 
  6. Arefi, M. and Khoshgoftar, M.J. (2014), "Comprehensive piezo-thermo-elastic analysis of a thick hollow spherical shell", Smart Struct. Syst., 14(2), 225-246. https://doi.org/10.12989/sss.2014.14.2.225. 
  7. Avdiaj, S., Setina, J. and Syla, N. (2009), "Modeling of the piezoelectric effect using the finite-element method (FEM)", Materials and Technologies, 49, 283. 
  8. Bagri, A., Taheri, H., Eslami, M.R. and Fariborz, S. (2006), "Generalized coupled thermoelasticity of a layer", J. Therm. Stress., 29(4), 359-370. https://doi.org/10.1080/01495730500360492. 
  9. Baksi, A., Roy, B.K. and Bera, R.K. (2007), "Effect of generalized thermoelasticity materials with memory", Struct. Eng. Mech., 25(5), 597-611. https://doi.org/10.12989/sem.2007.25.5.597. 
  10. Dell'Isola, F., Guarascio, M. and Hutter, K. (2000), "A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending Terzaghi's effective stress principle", Arch. Appl. Mech., 70, 323-337. https://doi.org/10.1007/s004199900020. 
  11. Ebrahimi, F., Hosseini, S.H.S. and Singhal, A. (2020), "A comprehensive review on the modeling of smart piezoelectric nanostructures", Struct. Eng. Mech., 74(5), 611-633. https://doi.org/10.12989/sem.2020.74.5.611. 
  12. Giorgio, I. (2022), "A variational formulation for one-dimensional linear thermoviscoelasticity", Math. Mech. Complex Syst., 9, 397-412. https://doi.org/10.2140/memocs.2021.9.397. 
  13. Giorgio, I. and Placidi, L. (2024), "A variational formulation for three-dimensional linear thermoelasticity with thermal inertia", Meccanica, 1-12. https://doi.org/10.1007/s11012-024-01796-0. 
  14. He, T., Tian, X. and Shen, Y.P. (2002), "State space approach to one-dimensional thermal shock problem for a semi-infinite piezoelectric rod", Int. J. Eng. Sci., 40, 1081-1097. https://doi.org/10.1016/S0020-7225 (02)00005-8. 
  15. Hetnarski, R.B. and Eslami, M.R. (2009), Thermal Stresses-Advanced Theory and Applications, Pringer Science & Business Media, Berlin. 
  16. Hosseini, S.A., Abolbashari, M.H. and Hosseini, S.M. (2016), "Generalized coupled non-Fickian/non-Fourierian diffusion-thermoelasticity analysis subjected to shock loading using analytical method", Struct. Eng. Mech., 60(3), 529-545. https://doi.org/10.12989/sem.2016.60.3.529. 
  17. Karami, B. and Shahsavari, B. (2019), "Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers", Smart Struct. Syst., 23(3), 215-225. https://doi.org/10.12989/sss.2019.23.3.215. 
  18. Kaur, I., Lata, P. and Singh, K. (2022), "Thermoelastic damping in generalized simply supported piezo-thermo-elastic nanobeam", Struct. Eng. Mech., 81(1), 29-37. https://doi.org/10.12989/sem.2022.81.1.029. 
  19. Kheibari, F., Beni, Y.T. and Golestanian, H. (2024), "On the generalized flexothermoelasticity of a microlayer", Acta Mechanica, 235, 3363-3384. https://doi.org/10.1007/s00707-024-03884-4. 
  20. Lasova, Z. and Zemcik, R. (2012), "Comparison of finite element models for piezoelectric materials", Procedia Eng., 48, 375-380. https://doi.org/10.1016/j.proeng.2012.09.528. 
  21. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5. 
  22. Pakdaman, M. and Tadi Beni, Y. (2024), "Size-dependent generalized piezothermoelasticity of microlayer", J. Appl. Comput. Mech., https://doi.org/10.22055/jacm.2024.46393.4510. 
  23. Rao, S.S. (2016), Mechanical Vibrations, Prentice Hall, Miami.
  24. Segerlind, L.J. (1991), Applied Finite Element Analysis, Wiley, New York. 
  25. Shakeriaski, F., Ghodrat, M., Dias, J.E. and Behnia, M. (2021), "Recent advances in generalized thermoelasticity theory and the modified models", J. Comput. Des. Eng., 8(1), 15-35. https://doi.org/10.1093/jcde/qwaa082. 
  26. Singh, B. and Bijarnia, R. (2021), "Nonlocal effects on propagation of waves in a generalized thermoelastic solid half space", Struct. Eng. Mech., 77(4), 473-479. https://doi.org/10.12989/sem.2021.77.4.473. 
  27. Taghizadeh, A. and Kiani, Y. (2019), "Generalized thermoelasticity of a piezoelectric layer", J. Therm. Stress., 42(7), 863-873. https://doi.org/10.1080/01495739.2019.1593905. 
  28. Tian, X., Zhang, J., Shen, Y. and Lu, T.J. (2007), "Finite element method for generalized piezothermoelastic problems", Int. J. Solid. Struct., 44(18-19), 6330-6339. https://doi.org/10.1016/j.ijsolstr.2007.02.035. 
  29. Tianhu, H., Xiaogeng, T. and Yapeng, S. (2002), "Two-dimensional generalized thermal shock problem of a thick piezoelectric plate of infinite extent", Int. J. Eng. Sci., 40, 2249-2264. https://doi.org/10.1016/S0020-7225(02)00137-4. 
  30. Verma, K. (2002), "On the propagation of waves in layered anisotropic media in generalized thermoelasticity", Int. J. Eng. Sci., 40(18), 2077-2096. https://doi.org/10.1016/S0020-7225(02)00030-7. 
  31. Xiaogeng, T., Jie, Z. and Yapeng, S. (2006), "Solving generalized piezothermoelastic problem by FEM with different theories", Acta Mechanica Sinica-Chin. Ed., 38(4), 553. 
  32. Youssef, H.M. and El-Bary, A.A. (2009), "Generalized thermoelastic infinite layer subjected to ramp-type thermal and mechanical loading under three theories-state space approach", J. Therm. Stress., 32(12), 1293-1309. https://doi.org/10.1080/01495730903249276.