DOI QR코드

DOI QR Code

Stability of prestressed steel I beams subjected to fire

  • Abdellah Mahieddine (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Djillali Liabes ) ;
  • Noureddine Ziane (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Djillali Liabes ) ;
  • Giuseppe Ruta (Department of Structural and Geotechnical Engineering, University "La Sapienza") ;
  • Rachid Zahi (University of Relizane) ;
  • Mohamed Zidi (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Djillali Liabes ) ;
  • SidAhmed Meftah (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Djillali Liabes )
  • Received : 2024.04.14
  • Accepted : 2024.09.09
  • Published : 2024.10.10

Abstract

This paper presents an innovative theoretical and numerical model to predict the lateral-torsional buckling (LTB) of simply supported steel I-beams with external prestressed tendons. The model incorporates an updated prestressing force, accounting for thermal effects and various external loadings. Critical multipliers are determined by solving an eigenvalue problem derived from applying Galërkin's approach to a set of nonlinear equilibrium equations. Validation is carried out through Finite Element Method (FEM) simulations, incorporating a new expression for an equivalent thermal expansion coefficient for the beam-tendon system, addressing both mechanical and thermal deformations. The primary aim is to estimate critical conditions considering material property degradation due to fire. The present results are generally in good agreement with those provided by the literature.

Keywords

References

  1. Abaqus Standard User's Manual, Version 6.4 (2003), Hibbit: Karlsson and Sorensen Inc., Pawtucket, RI, USA.
  2. Abdelnabi, O.N. (2013), "Stability of externally prestressed steel plate girders", Thesis, Benha University, India.
  3. ASCE (1992), Structural Fire Protection. Manuals and Reports on Engineering Practice No. 78, Committee on Fire Protection, New York, USA.
  4. Chan, S.L., Shu, G.P. and Lu, Z.T. (2002), "Stability analysis and parametric study of pre-stressed stayed columns", Eng. Struct., 24, 115-124. https://doi.org/10.1016/S0141-0296(01)00026-8.
  5. Cheng, X., Hong, J., Ma, M. and Li, G. (2021), "Flexural performance test of a prestressed concrete beam with plastic bellows", Struct. Eng. Mech., 79(2), 223-235. https://doi.org/10.12989/sem.2021.79.2.223.
  6. Du, Y., Peng, J.Z., Liew, J.Y.R. and Li, G.Q. (2018), "Mechanical properties of high tensile steel cables at elevated temperatures", Constr. Build. Mater., 182, 52-65. https://doi.org/10.1016/j.conbuildmat.2018.06.012.
  7. Du, Y., Sun, Y.K., Jiang, J. and Li, G.Q. (2019), "Effect of cavity radiation on transient temperature distribution in steel cables under ISO834 fire", Fire Saf. J., 104, 79-89. https://doi.org/10.1016/j.firesaf.2019.01.002.
  8. Dwaikat, M. and Kodur, V. (2011), "Engineering approach for predicting fire response of restrained steel beams", J. Eng. Mech., 137(7), 447-461. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000244.
  9. EN 1992-1-1. Eurocode 2 (2004), Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, European Committee for Standardisation (CEN), Brussels, Belgium.
  10. EN 1993-1-1, Eurocode 3 (2005), Design of Steel Structures. Part 1-1: General Rules and Rules for Buildings, European Committee for Standardization, Brussels, Belgium.
  11. EN 1994-1-1. Eurocode 4 (2004), Design of Composite Steel Concrete Structures, Part 1.1: General Rules and Rules for Buildings, European Committee for Standardization (CEN), Brussels, Belgium.
  12. Franssen, J.M. and Vila Real, P. (2015), Fire Design of Steel Structures, 2nd Edition, Wiley.
  13. Gosaye, J., Gardner, L., Wadee, M.A. and Ellen, M.E. (2016), "Compressive behaviour and design of prestressed steel elements", Struct., 5, 76-87. https://doi.org/10.1016/j.istruc.2015.09.001.
  14. Guo, Y.L., Fu, P.P., Zhou, P. and Tong, J.Z. (2016), "Elastic buckling and load resistance of a single cross-arm pre-tensioned cable stayed buckling-restrained brace", Eng. Struct., 126, 516-530. https://doi.org/10.1016/j.engstruct.2016.08.013.
  15. Guo, Y.L., Zhou, P., Bradford, M.A., Pi, Y.L., Tong, J.Z. and Fu, P.P. (2017), "Theoretical and numerical studies of elastic buckling and load resistance of double cross-arm pre-tensioned cable stayed buckling-restrained braces", Eng. Struct., 153, 674-699. https://doi.org/10.1016/j.engstruct.2017.10.064.
  16. Gupta, L.M., Ronghe, G.N. and Naghate, M.K. (2003), "Behaviour and stability of prestressed steel plate girder for torsional buckling", Steel Compos. Struct., 3(1), 65-73. https://doi.org/10.12989/scs.2003.3.1.065.
  17. Hirt, M.A. and Bez, R. (1994), "Traite de Genie Civil", de l'Ecole Polytechnique Federale de Lausanne, Vol 10, Presses Polytechniques et Universitaire Romandes, Suisse.
  18. Hu, L., Ghafoori, E., Pons, S., Feng, P., Yang, J. and Azim, I. (2021), "Fire behavior and design of steel columns reinforced by prestressed CFRP strips", Compos. Struct., 275, 114516. https://doi.org/10.1016/j.compstruct.2021.114516.
  19. Hu, L.L., Feng, P., Ghafoori, E. and Fontana, M. (2019), "Buckling analysis of steel columns strengthened by pre-stressed CFRP under room temperature and fire", 3rd International Fire Safety Symposium (IFireSS 2019), Ottawa, Canada.
  20. Kim, M.Y., Hayat, U. and Mehdi, A.I. (2021), "Lateral-torsional buckling of steel beams pre-stressed by straight tendons with a single deviator", Thin Wall. Struct., 163, 107642. https://doi.org/10.1016/j.tws.2021.107642.
  21. Kim, M.Y., Hayat, U., Kim, S.B. and Mehdi, A.I. (2022), "Stabilizing effects of discrete deviators on LTB of mono-symmetric thin-walled beams pre-stressed by rectilinear tendon cables", Thin Wall. Struct., 176, 109329. https://doi.org/10.1016/j.tws.2022.109329.
  22. Kim, M.Y., Nanzad, N. and Hayat, U. (2020), "Effects of unbonded deviators on the out-of-plane buckling of steel H-beams pre-stressed by a straight tendon cable", Eng. Struct., 214, 110566. https://doi.org/10.1016/j.engstruct.2020.110566.
  23. Kodur, V.K.R. and Shakya, A.M. (2013), "Effect of temperature on thermal properties of spray applied fire resistive materials", Fire Saf. J., 61, 314-323. https://doi.org/10.1016/j.firesaf.2013.09.011.
  24. Librescu, L. and Song, O. (2006), Thin-Walled Composite Beams Theory and Application, Springer.
  25. Lim, D. (2022), "Structural behavior of steel beams strengthened with CFRP strips and cables", Steel Compos. Struct., 42(3), 289-298. https://doi.org/10.12989/scs.2022.42.3.289.
  26. Lou, T., Lopes, S.M.R. and Lopes, A.V. (2016), "Numerical modeling of externally prestressed steel-concrete composite beams", J. Constr. Steel Res., 121, 229-236. https://doi.org/10.1016/j.jcsr.2016.02.008.
  27. Mehdi, A.I. and Kim, M.Y. (2023), "LTB analysis of pre-stressed mono-symmetric thin-walled beams with deviators under non-uniform bending moments using a simplified FEM", Struct., 47, 2331-2346. https://doi.org/10.1016/j.istruc.2022.12.012.
  28. Mohri, F., Azrar, L. and Potier-Ferry, M. (2001), "Flexural-torsional post-buckling analysis of thin-walled elements with open sections", Thin Wall. Struct., 39, 907-938. https://doi.org/10.1016/S0263-8231(01)00038-6.
  29. Moscoso, A.M., Tamayo, J.L.P. and Morsch, I.B. (2017), "Numerical simulation of external prestressed steel-concrete composite beams", Comput. Concrete, 19, 191-201. https://doi.org/10.12989/cac.2017.19.2.191.
  30. Oukaili, N. and Peera, I. (2022), "Behavioral nonlinear modeling of prestressed concrete flexural members with internally unbonded steel strands", Result. Eng., 14, 100411. https://doi.org/10.1016/j.rineng.2022.100411.
  31. Peng, F. and Xue, W. (2019), "Calculating method for ultimate tendon stress in internally unbonded prestressed concrete members'', ACI Struct. J., 116(5), 225-234. https://doi.org/10.14359/51716764.
  32. Shin, S., Lee, H. and Lee, J.H. (2020), "Effects of prestressing force on natural frequency of prestressed concrete beams considering self-weight", Struct. Eng. Mech., 74(4), 495-502. https://doi.org/10.12989/sem.2020.74.4.495.
  33. Sung, D. and Hong, S. (2022), "Experimental study on long-term behavior of prestressed steel I-beam-concrete composite beams", Steel Compos. Struct., 42(5), 671-683. https://doi.org/10.12989/scs.2022.42.5.671.
  34. Vlasov, V.Z. (1962), "Thin walled elastic beams. Russian original book: Stroizdat, Moscow, 1940. French translation: Pieces longues en voiles minces", Eyrolles, Paris.
  35. Wadee, M.A., Gardner, L. and Osofero, A.I. (2013), "Design of prestressed stayed columns", J. Constr. Steel Res., 80, 287-298. https://doi.org/10.1016/j.jcsr.2012.09.021.
  36. Wu, K., Wadee, M.A. and Gardner, L. (2019), "Stability and ultimate behaviour of prestressed stayed beam-columns", Eng. Struct., 201, 109723. https://doi.org/10.1016/j.engstruct.2019.109723.
  37. Wu, K., Wadee, M.A. and Gardner, L. (2020), "Interactive buckling in prestressed stayed beam-columns", Int. J. Mech. Sci., 174, 105479. https://doi.org/10.1016/j.ijmecsci.2020.105479.
  38. Yan, W.T., Chen, L.J., Han, B., Wei, F., Xie, H.B. and Yu, J.P. (2022), "Proposals for flexural capacity prediction method of externally prestressed concrete beam", Struct. Eng. Mech., 83(3), 363-375. https://doi.org/10.12989/sem.2022.83.3.363.
  39. Yang, F., Liu, K., Wang, Y.Q. and Huang, M (2023), "Mechanical behavior and simplified models for the post-tensioned prestressed concrete lining", Struct. Eng. Mech., 86(1), 17-27. https://doi.org/10.12989/sem.2023.86.1.017.
  40. Yu, J. and Wadee, M.A. (2017), "Mode interaction in triple-bay prestressed stayed columns", Int. J. Nonlin. Mech., 88, 47-66. https://doi.org/10.1016/j.ijnonlinmec.2016.10.012.
  41. Zhang, W.F. (2018), "Symmetric and antisymmetric lateral-torsional buckling of prestressed steel I-beams", Thin Wall. Struct., 122, 463-479. https://doi.org/10.1016/j.tws.2017.10.015.
  42. Zhou, H., Li, S., Zhang, C. and Naser, M.Z. (2021), "Modeling fire performance of externally prestressed steel-concrete composite beams", Steel Compos. Struct., 41(5), 625-636. https://doi.org/10.12989/scs.2021.41.5.625.
  43. Ziane, N., Meftah, S.A., Ruta, G., Tounsi, T. and Adda Bedia, E.A. (2025), "Investigation of the Instability of FGM box beams", Struct. Eng. Mech., 54(3), 579-595. https://doi.org/10.12989/sem.2015.54.3.579.