DOI QR코드

DOI QR Code

The flexural behavior of ferrocement RC channel slabs

  • Yousry B.I. Shaheen (Civil Engineering Department, Faculty of Engineering, Menoufia University) ;
  • Ashraf M. Mahmoud (Civil Engineering Department, Faculty of Engineering, Modern University for Technology and Information (MTI))
  • Received : 2023.11.23
  • Accepted : 2024.09.05
  • Published : 2024.10.10

Abstract

The current study examines the experimental and numerical performance of reinforced concrete (RC) channel slabs made of ferrocement that have been reinforced with fiber glass, expanded steel mesh, and welded steel mesh. As part of the testing program, ten RC channel slabs with dimensions of 500 mm×40 mm×2500 mm were loaded flexibly. The three main factors that can be altered are the mesh layer count, the type of reinforcing materials, and the reinforcement volume fraction. The main objective is to assess the effects of fortifying composite RC channel slabs with novel inventive materials. ANSYS-16.0 Software was used to simulate the behavior of composite channel slabs using nonlinear finite element analysis (NLFEA). It also shows how parametric analysis can be used to pinpoint variables like variations in slab dimensions that could significantly affect the mechanical behavior of the model. The obtained experimental and numerical results showed that finite element (FE) simulations had a tolerable degree of accuracy in estimating experimental values. It is crucial to show that specimens strengthened with fiber glass meshes gained about 12% lessstrength than specimens strengthened with expanded or welded steel meshes. In addition, RC channel slab reinforcement made of welded steel meshes has a 24% higher strength than expanded steel meshes. Tested under flexural loads, ferrocement specimens outperform conventional reinforced concrete specimens in terms of ultimate loads and energy absorption.

Keywords

References

  1. Abdel-Naby, A. (2006), "Development of ferrocement U-shaped beams infilled with core materials", M.S. Thesis, the American University in Cairo, Egypt.
  2. Adam, M.A., Erfan, A.M., Habib, F.A. and El-Sayed, T.A. (2021), "Structural behavior of high-strength concrete slabs reinforced with GFRP bars", Polym., 13, 2997. https://doi.org/10.3390/polym13172997.
  3. Al-Rousan, R.Z., Alhassan, M.A. and Al-Salman, H. (2017), "Impact resistance of polypropylene fiber reinforced concrete two-way slabs", Struct. Eng. Mech., 62(3), 373-380. https://doi.org/10.12989/sem.2017.62.3.373.
  4. Al-Taan, S.A. and Abdul-Razzak, A.A. (2021), "Nonlinear finite element analysis of fiber reinforced concrete slabs", Eng. Technol. J., 39(3), 426-439. https://doi.org/10.30684/etj.v39i3A.1641.
  5. ANSYS User Manual Release 16.0. (2015), ANSYS Inc., Canonsburg, Pennsylvania.
  6. ASTM C III6/C III6M (2015), Standard Specification for Fiber-Reinforced Concrete, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959 USA.
  7. Cao, L., Liu, J. and Chen, F. (2020), "Experimental study on vibration serviceability of steel-concrete composite floor", Struct. Eng. Mech., 74(5), 711-722. https://doi.org/10.12989/sem.2020.74.5.711.
  8. CP110 (1972), Code of Practice for Structural Use of Concrete, Design, Material and workmanship, British Standard Institute, London.
  9. El-Abd, A., Shaaban, I.G., Elkady, H. and Seoud, O.A. (2005), "Using ferrocement in repair and strengthening of corner beam column joints subjected to displacement cyclic loading", CERM, Al-Azhar Univ., 27(2), 446-458.
  10. Fahmy, E.H., Shaheen, Y.B.I., Abou Zeid, M.N. and Gaafar, H.M. (2012), "Ferrocement sandwich and hollow core panels for floor construction", Can. J. Civil Eng., 39, 1297-1310. https://doi.org/10.1139/cjce-2011-0016.
  11. He, J., Liu, Y., Xu, X. and Li, L. (2014), "Loading capacity evaluation of composite box girder with corrugated webs and steel tube slab", Struct. Eng. Mech., 50(4), 501-524. https://doi.org/10.12989/sem.2014.50.4.501.
  12. Hoque, M. (2006), "3D Nonlinear mixed finite-element analysis of RC beams and plates with and without FRP reinforcement", M.Sc. Thesis, University of Manitoba, Winnipeg, Manitoba, Canada.
  13. Housing and Building National Research Center (2007), The Egyptian Code for Design and Construction of Concrete Structures, ECP 203-2007, Ministry of Housing, Utilities and Urban Communities, Giza, Egypt.
  14. IFS Commitee 10 (2001), Ferrocement Model Code: Building Code Recommendations for Ferrocement, IFS 10-01, International Ferrocement Society, Asian Institute of Technology, Bangkok, Thailand.
  15. Jaafer, A.A., AL-Shadidi, R. and Kareem, S.L. (2019), "Enhancing the punching load capacity of reinforced concrete slabs using an external epoxy-steel wire mesh composite", Fiber., 7(8), 68. https://doi.org/10.3390/fib7080068.
  16. Jaraullah, M.N., Dawood, E.T. and Abdullah, M.H. (2022), "Static and impact mechanical properties of ferrocement slabs produced from green mortar", Case Stud. Constr. Mater., 16, e00995. https://doi.org/10.1016/j.cscm.2022.e00995.
  17. Kaish, A., Jamil, M., Raman, S., Zain, M. and Nahar, L. (2018), "Ferrocement composites for strengthening of concrete columns: A review", Constr. Build. Mater., 160, 326-340. https://doi.org/10.1016/j.conbuildmat.2017.11.054.
  18. Li, X., Xie, H., Yan, M., Gou, H., Zhao, G. and Bao, Y. (2018), "Eccentric compressive behavior of reinforced concrete columns strengthened using steel mesh reinforced resin concrete", Appl. Sci., 8(10), 1827. https://doi.org/10.3390/app8101827.
  19. Muthulingam, M. and Devi, S. (2020), "Analytical study of fiber reinforced post tensioned slab", Int. J. Eng. Res. Technol., 9(5), 233-235.
  20. Obaid, A.H. and Jaafer, A.A. (2022), "Experimental investigation of ferrocement sandwich composite jack arch slab", Asia. J. Civil Eng., 23, 1155-1168. https://doi.org/10.1007/s42107-022-00467-3.
  21. Qasim, Q.A. (2020), "Nonlinear finite element analysis of effect of temperature on self-compacted steel fiber reinforced concrete slabs", 2nd International Conference on Materials Engineering & Science (IConMEAS 2019), 020194-1-020194-11. https://doi.org/10.1063/5.0000208.
  22. Qeshta, I.M.I., Shafigh, P. and Jumaat, M.Z. (2015), "Flexural behaviour of RC beams strengthened with wire mesh-epoxy composite", Constr. Build. Mater., 79, 104-114. https://doi.org/10.1016/j.conbuildmat.2015.01.013.
  23. Resan, S.F., Alrubaie, M.A.A., Alkhazraji, H., Mohsen, E.N., Zaghair, F.S. and Hashem, K.K. (2023), "Behavior of multilayer ferrocement slab containing treated sponge layer core", Tikrit J. Eng. Sci., 30(1), 1-11. http://doi.org/10.25130/tjes.30.1.1.
  24. Rinsha, C, and Jose, AM. (2018), "Finite element analysis for the behavioral study of composite waffle slab using ANSYS", Int. J. Eng. Trend. Appl., 5(3), 21-27.
  25. Shaaban, I.G., Shaheen, Y.B.I., Elsayed, E.L., Kamal, O.A. and Adesina, P.A. (2018), "Flexural behavior and theoretical prediction of lightweight ferrocement composite beams", Case Stud. Constr. Mater., 9, e00204. https://doi.org/10.1016/j.cscm.2018.e00204.
  26. Shaaban, I.G., Shaheen, Y.B.I., Elsayed, E.L., Kamal, O.A. and Adesina, P.A. (2018), "Flexural characteristics of lightweight ferrocement beams with various types of core materials and mesh reinforcement", Constr. Build. Mater., 171, 802-816. https://doi.org/10.1016/j.conbuildmat.2018.03.167.
  27. Shaheen, Y.B.I., Etman, Z.A. and Elrefy, A.M. (2022), "Structural behavior of ferrocement composite hollow-cored panels for roof construction", Chall. J. Concrete Res. Lett., 13(1), 5. https://doi.org/10.20528/cjcrl.2022.01.002.
  28. Shaheen, Y.B.I., Mohamed, A.M. and Mohamed, H.R. (2016), "Structural performance of ribbed ferrocement plates reinforced with composite materials", Struct. Eng. Mech., 60(4), 567-594. https://doi.org/10.12989/sem.2016.60.4.567.
  29. Shaheen, Y.B.I., Mostafa, A.E.A. and Abosamra, A.R. (2023), "Effect of temperature and impact loads on ferrocement slabs", International Conference on Advances in Structural and Geotechnical Engineering ICASGE'23, Hurghada, Egypt.
  30. Shaheen, Y.B.I., Safan, M.A. and Abdalla, M.A. (2012), "Structural behavior of composite reinforced ferrocement plates", Concrete Res. Lett., 3(3), 477-490.
  31. Shaheen, Y.B.I., Soliman, N.M. and Kandil, D.E. (2013), "Influence of reinforced ferrocement concrete plates under impact load", Int. J. Curr. Eng. Technol., 3(4), 1528-1540.
  32. Shirgaonkar, A.A., Patil, Y.D. and Patil, H.S. (2020), "Finite element analysis of profiled deck composite slab using ANSYS", Adv. Struct. Eng. Rehab., 73-82. https://doi.org/10.1007/978-981-13-7615-3_6.
  33. Singh, G. (2006), "Finite element analysis of reinforced concrete shear walls", M.Sc. Thesis, Deemed University, India.
  34. Srivastava, V., Kumar, R., Agarwal, V.C. and Mehta, P.K. (2014), "Effect of silica fume on workability and compressive strength of OPC concrete", J. Environ. Nanotechnol, 3(3), 32-35. https://doi.org/10.13074/jent.2014.09.143086.
  35. Vakhshouri, B. and Nejadi, S. (2018), "Effect of fiber reinforcing on instantaneous deflection of self-compacting concrete oneway slabs under early-age loading", Struct. Eng. Mech., 67(2), 155-163. https://doi.org/10.12989/sem.2018.67.2.155.
  36. Wang, Y., Wang, J., Zhao, D., Hota, G., Liang, R. and Hui, D. (2022), "Flexural behavior of insulated concrete sandwich panels using FRP-jacketed steel-composite connectors", Adv. Mater. Sci. Eng., 2022(1), 6160841. https://doi.org/10.1155/2022/6160841.
  37. Yang, Y., Zhang, G.J., Wu, G. and Cao, D.F. (2021), "Finite element analysis of ballastless track slabs reinforced with fiber-reinforced polymer bars", Adv. Struct. Eng., 25(15), 3405-3419. https://doi.org/10.1177/13694332211027314.
  38. Yoo, D.Y., Kwon, K.Y., Yang, J.M. and Yoon, Y.S. (2017), "Effect of cover depth and rebar diameter on shrinkage behavior of ultra-high-performance fiber-reinforced concrete slabs", Struct. Eng. Mech., 61(6), 711-719. https://doi.org/10.12989/sem.2017.61.6.711.