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ABSTRACT. We consider the bifocusing method (BFM) for a fast identification of small ob-
jects in microwave imaging. In many researches, it was very hard to measure the scattering
parameter data if the location of the transmitter and the receiver is the same. Due to this reason,
the imaging function of BFM has mainly been designed by converting unknown measurement
data into the zero constant; this approach has yielded reliable imaging results, but the theoretical
reason for this conversion has not been investigated yet. In this study, we converted unknown
measurement data to a fixed constant and applied the BFM to retrieve small objects. To demon-
strate the effect of the converted constant, we show that the imaging function of the BFM can
be represented in terms of an infinite series of the Bessel functions of an integer order, antenna
setting, material properties, and applied constant. Based on the theoretical result, we concluded
that converting unknown measurement data to constant zero guarantees good imaging results,
including the unique determination of the objects. Simulation results obtained with synthetic
and real data support the theoretical result.

1. INTRODUCTION

The detection and visualization of unknown objects completely embedded in a homoge-
neous region or material is an interesting research subject in inverse scattering problems and
microwave imaging. In this context, various reconstruction algorithms have been developed,
and these algorithms are generally classified as quantitative (or iterative) and qualitative (or
non-iterative) methods. Recently, various remarkable algorithms have been developed and ap-
plied to various problems. For example, Newton-type algorithm for shape reconstruction of
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arc-like perfectly conducting crack [1], Gauss-Newton method in electrical impedance tomog-
raphy [2], distorted Born [3] iterative method for reconstructing parameter distribution, Nelder-
Mead simplex method for identifying a perfect conductor in a two-layered medium [4], level
set method for shape reconstruction of arbitrary shaped targets [5], direct and orthogonality
sampling methods for object detection [6, 7], factorization method for breast cancer detec-
tion [8], Kirchhoff and subspace migration algorithms in microwave imaging [9, 10], MUltiple
Signal Classification for anomaly detection [11], linear sampling method for identifying un-
known scatterers from Fresnel and Manitoba databases [12], and topological derivative for a
fast identification of small conductivity inclusion [13].

Among the remarkable techniques, the bifocusing method (BFM), which is categorized as
a qualitative technique, has been gaining attention for its potential to effectively address the
inverse scattering problem in microwave imaging. It has been applied to various problems in
tomographic imaging [14], ultra-wide-band tomographic radar imaging [15], damage detection
of concrete void [16], and localization of small scatterers [17]. Prior research has confirmed
that the BFM is a fast and effective method for identifying unknown objects and is stable
against random noise. For a proper application of the BFM in microwave imaging with multi-
static measurement configurations, complete elements of the scattering matrix must be known.
However, in many applications, the diagonal elements of the matrix cannot be measured when
the transmitting and receiving antennas are installed at the same location, as explained in [18].
Let us emphasize that without a priori information of the objects, unknown measurement data
cannot be estimated. Due to this reason, unknown measurement data was typically converted
to a constant zero, as done by [19, 20, 21, 22, 23, 24]. Notice that if one converts the unknown
measurement data into a nonzero constant, the obtained result is poor when the absolute value
of the constant is not small enough because the imaging performance of the BFM depends
significantly on the constant. However, to the best of our knowledge, the effect of the converted
constant has not been investigated satisfactorily from the perspective of its mathematical theory.

In this study, we consider the application of the BFM for a fast imaging of small objects in
microwave imaging. Unlike the previous studies, we converted the unknown diagonal elements
of the scattering matrix into a fixed constant and introduced an imaging function of the BFM.
To show the influence of the converted constant, we established the mathematical theory by
showing that the imaging function can be represented by an infinite series of the Bessel function
of integer order, the antenna settings, the material properties, and the converted constant. Based
on the theoretical result, we demonstrated that the imaging performance depends significantly
on the converted constant and that the selection of zero constant guarantees good imaging
results, including unique determination of objects. The theoretical result was verified through
the numerical simulation results obtained with synthetic and real data.

The remaining part of this study is organized as follows. In Section 2, we introduce the
problem setting, the basic concept of the scattered field S− parameter in the presence of small
objects, and the imaging function of the BFM by converting unknown diagonal elements of
the scattering matrix as a fixed constant. Section 3 explores the mathematical structure of the
imaging function by establishing the relationship with an infinite series of the Bessel functions,
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the antenna settings, the material properties, and the converted constant. Based on the theo-
retical result, we conclude that conversion to zero constant is the best choice to identify the
objects, and this conversion guarantees unique determination. Section 4 reports the simulation
results obtained with synthetic and real data to support the theoretical result. Section 5 presents
a short conclusion and suggests directions for future studies.

2. SCATTERING MATRIX AND IMAGING FUNCTION FOR THE BIFOCUSING METHOD

2.1. Problem Setting and Scattering Matrix. Assume that there exists a set of well-separated
small objects Ds, s = 1, 2, . . . , S, in a two-dimensional (2D) homogeneous region Ω. We de-
note D as the collection of Ds and assume that D and Ω are nonmagnetic. Correspondingly,
we set the value of magnetic permeability as µ(r) = µ0 = 4π × 10−7H/m for every r ∈ Ω.
Further, we assume that every material is characterized by its dielectric permittivity and elec-
trical conductivity at a given angular frequency ω = 2πf . Let εb and εs be the values of the
permittivity of Ω and Ds, respectively. Analogously, σb and σs denote the conductivity of Ω
and Ds, respectively. Then, we define the following piecewise constants:

ε(r) =

{
εs, r ∈ Ds

εb, r ∈ Ω\D and σ(r) =

{
σs, r ∈ Ds

σb, r ∈ Ω\D,

and denote kb = ω
√
µ0(εb − iσb/ω) as the background wavenumber. Throughout this study,

we assumed that the following relations hold: for s = 1, 2, . . . , S,

εb ≫ σb
ω

and
(√

εs
εb

− 1

)
diam(Ds) <

λ

2
, (2.1)

where λ denotes the given positive wavelength, and diam(Ds) is the diameter of Ds.
Let An, n = 1, 2, · · · , N , denote the dipole antenna located at an to transmit and receive

signals, and let Sscat(n,m) represent the measured scattered-field S−parameter data with the
transmitter Am and receiver An. From [25], Sscat(n,m) can be represented by the following
integral equation formula

Sscat(n,m) =
ik20
4ωµ0

∫
Ω

(
ε(r′)− εb

εb
+ i

σ(r′)− σb
ωεb

)
E
(z)
inc(am, r

′)E
(z)
tot(r

′,an)dr
′, (2.2)

where k0 = ω
√
εbµ0 denotes the lossless background wavenumber; E

(z)
inc(am, r

′) is the z-
component of the incident electric field Einc(am, r) attributed to the point current density at
Am that satisfies {

∇×Einc(am, r) = iωµbHinc(am, r)
∇×Hinc(am, r) = (σb − iωεb)Einc(am, r),

and E
(z)
tot(r,an) is the corresponding z-component of the total electric field Etot(r,an) in the

presence of D measured by the An that satisfies{
∇×Etot(r,an) = iωµbHtot(r,an)
∇×Htot(r,an) = (σ(r)− iωε(r))Etot(r,an)
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with transmission condition on ∂Ds. Here, Hinc and Htot denote the magnetic field. The
time-harmonic dependence exp(−iωt) is assumed.

It is worth to emphasize that E(z)
tot(r,an) cannot be determined without a priori information

of D. Hence, it is very difficult to apply (2.2) directly for designing the imaging function. We
emphasize that since the condition (2.1) holds, it is possible to apply the Born approximation
E
(z)
tot(r

′,an) ≈ E
(z)
inc(r

′,an). Then, Sscat(n,m) can be represented as the shown in following
formula:

Sscat(n,m) ≈ ik20
4ωµ0

∫
D

(
ε(r′)− εb

εb
+ i

σ(r′)− σb
ωεb

)
E
(z)
inc(am, r

′)E
(z)
inc(r

′,an)dr
′. (2.3)

This formula will play a key role in the design and structure analysis of the imaging function.

2.2. Imaging Function of the Bifocusing Method. Here, we briefly introduce the imaging
function of the BFM for identifying Ds from the scattering matrix S. The elements of this
matrix are measurement data Sscat(n,m).

S =


Sscat(1, 1) Sscat(1, 2) · · · Sscat(1, N − 1) Sscat(1, N)
Sscat(2, 1) Sscat(2, 2) · · · Sscat(2, N − 1) Sscat(2, N)

...
...

. . .
...

...
Sscat(N, 1) Sscat(N, 2) · · · Sscat(N,N − 1) Sscat(N,N)

 (2.4)

Then, by applying the mean-value theorem to (2.3), it is seen that there exists rs ∈ Ds such
that

Sscat(n,m) ≈ ik20
4ωµ0

S∑
s=1

(
εs − εb
εb

+ i
σs − σb
ωεb

)
area(Ds)E

(z)
inc(am, rs)E

(z)
inc(rs,an)

and correspondingly, S can be decomposed as

S ≈
S∑

s=1

O(Ds)


E
(z)
inc(a1, rs)

E
(z)
inc(a2, rs)

...

E
(z)
inc(aN , rs)


[
E
(z)
inc(rs,a1) E

(z)
inc(rs,a2) · · · E

(z)
inc(rs,aN )

]
, (2.5)

where

O(Ds) =
ik20
4ωµ0

(
εs − εb
εb

+ i
σs − σb
ωεb

)
area(Ds).

Based on the decomposition (2.5), we can introduce the traditional imaging function of the
BFM via the synthesis of inversion of two incident fields E

(z)
inc(r,am) and E

(z)
inc(r,an), n =

1, 2, . . . , N . For each r ∈ Ω, by defining a test vector

G(r) =

[
1

E
(z)
inc(a1, r)

1

E
(z)
inc(a2, r)

· · · 1

E
(z)
inc(aN , r)

]
, (2.6)
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the imaging function of the BFM is given by

F(r) = |G(r)SG(r)T | =

∣∣∣∣∣
N∑

n=1

M∑
m=1

Sscat(n,m)

E
(z)
inc(am, r)E

(z)
inc(r,an)

∣∣∣∣∣ .
Then, peaks of large magnitudes appear at r = rs ∈ Ds so that small objects can be recognized
through the map of F(r), refer to [15, 14, 16, 17].

Note that from the measurement system of the microwave machine reported in [18], the
diagonal elements Sscat(n, n), n = 1, 2, . . . , N , of S cannot be measured because each of the
N antennas is used for signal transmission, and the remaining N − 1 antennas are used for
signal reception. This means that we can use the following matrix instead of the S

unknown Sscat(1, 2) · · · Sscat(1, N − 1) Sscat(1, N)
Sscat(2, 1) unknown · · · Sscat(2, N − 1) Sscat(2, N)

...
...

. . .
...

...
Sscat(N, 1) Sscat(N, 2) · · · Sscat(N,N − 1) unknown

 .
Without a priori information of the objects, the diagonal elements cannot be generated. There-
fore, unknown measurement data were usually converted to a zero constant ([24, 20]). How-
ever, a reliable mathematical theory for this conversion has not been satisfactorily established.
Motivated by this requirements, we defined the following scattering matrix by converting un-
known data to a fixed constant C

K(C) =


C Sscat(1, 2) · · · Sscat(1, N − 1) Sscat(1, N)

Sscat(2, 1) C · · · Sscat(2, N − 1) Sscat(2, N)
...

...
. . .

...
...

Sscat(N, 1) Sscat(N, 2) · · · Sscat(N,N − 1) C


and applied the following imaging function of the BFM

FBFM(r, C) = |G(r)K(C)G(r)T |. (2.7)

3. STRUCTURE OF THE IMAGING FUNCTION AND THE BEST SELECTION OF CONSTANT

Following the simulation result, we can identify Ds through the map of FBFM(r, C) for
some particular selection ofC. We established the mathematical theory of the imaging function
FBFM(r, C) to explain the effect ofC and to explain why the selectionC = 0 is the best choice
that guarantees the unique determination of the objects. To this end, we derived the following
result. Although the derivation is similar to the recent studies [24, 20], we have included the
derivation for the convenience of the readers.

Theorem 3.1 (Structure of the Imaging Function). Let θn = an/|an| = an/R = (cos θn, sin θn),
r = |r|(cosψ, sinψ), and r− r′ = |r− r′|(cosϕ′, sinϕ′). If an satisfies |kb||an − r| ≫ 0.25



APPLICATION OF THE BIFOCUSING METHOD IN MICROWAVE IMAGING 101

for n = 1, 2, · · · , N and r ∈ Ω, FBFM(r, C) can be represented as follows:

FBFM(r, C) =

∣∣∣∣ ik20N2

4ωµ0

∫
D

(
ε(r′)− εb

εb
+ i

σ(r′)− σb
ωεb

)(
E1(kb, r′)−

E2(kb, r′)
N

)
dr′

(3.1)

+CN

(
J0(2kb|r|) +

1

N

N∑
n=1

∞∑
p=−∞,p ̸=0

ipJp(2kb|r|) exp(ipψ)
)∣∣∣∣,

(3.2)

where

E1(kb, r′) =
(
J0(kb|r− r′|) + 1

N

N∑
n=1

∞∑
p=−∞,p ̸=0

ipJp(kb|r− r′|) exp
(
ip(θn − ϕ′)

))2

and

E2(kb, r′) = J0(2kb|r− r′|) + 1

N

N∑
n=1

∞∑
p=−∞,p ̸=0

ipJp(2kb|r− r′|) exp
(
ip(θn − ϕ′)

)
.

Here, Jp denotes pth-order Bessel function of the first kind.

Proof. Following [26], E(z)
inc can be represented by the 2D Green’s function:

E
(z)
inc(r, r

′) = − i

4
H

(1)
0 (kb|r− r′|), r ̸= r′,

whereH(1)
0 denotes the zero-order Hankel function of the first kind. Since |kb||an−r| ≫ 0.25

for all n, the following asymptotic form holds (see [27] for instance):

H
(1)
0 (kb|an − r|) ≈ (1− i) exp(ikb|an|)√

kbπ|an|
exp(−ikbθn · r). (3.3)

Now, let us decompose the scattering matrix K(C) as

K(C) = S− D+ C,

where S is given by (2.4),

D =


Sscat(1, 1) 0 · · · 0

0 Sscat(2, 2) · · · 0
...

...
. . .

...

0 0 · · · Sscat(N,N)

 , and C =


C 0 · · · 0

0 C · · · 0
...

...
. . .

...

0 0 · · · C

 .
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First, by combining (2.3), (2.6), (2.7), and (3.3), we can find that

G(r)SG(r)T =

N∑
n=1

M∑
m=1

Sscat(n,m)

E
(z)
inc(am, r)E

(z)
inc(r,an)

=
ik20
4ωµ0

N∑
n=1

M∑
m=1

∫
D

(
ε(r′)− εb

εb
+ i

σ(r′)− σb
ωεb

)
E
(z)
inc(am, r

′)

E
(z)
inc(am, r)

E
(z)
inc(r

′,an)

E
(z)
inc(r,an)

dr′

≈ ik20
4ωµ0

∫
D

(
ε(r′)− εb

εb
+ i

σ(r′)− σb
ωεb

)( N∑
n=1

exp
(
ikbθn · (r− r′)

))2

dr′.

Since θn · kb(r − r′) = kb|r − r′| cos(θn − ϕ′) and the following Jacobi–Anger expansion
holds uniformly

exp(ir cos θ) = J0(r) +
∞∑

p=−∞,p ̸=0

ipJp(r) exp(ipθ),

we can obtain
N∑

n=1

exp
(
ikbθn · (r− r′)

)
=

N∑
n=1

exp
(
kb|r− r′| cos(θn − ϕ′)

)
= N

(
J0(kb|r− r′|) + 1

N

N∑
n=1

∞∑
p=−∞,p ̸=0

ipJp(kb|r− r′|) exp
(
ip(θn − ϕ′)

))

: = N

(
J0(kb|r− r′|) + 1

N
Φ(kb, r

′)

)
.

Correspondingly,

G(r)SG(r)T

≈ ik20N
2

4ωµ0

∫
D

(
ε(r′)− εb

εb
+ i

σ(r′)− σb
ωεb

)(
J0(kb|r− r′|) + 1

N
Φ(kb, r

′)

)2

dr′. (3.4)

Next, similar to the derivation of (3.4), we can derive

G(r)DG(r)T

=
ik20
4ωµ0

N∑
n=1

∫
D

(
ε(r′)− εb

εb
+ i

σ(r′)− σb
ωεb

)(
E
(z)
inc(r

′,an)

E
(z)
inc(r,an)

)2

dr′

≈ ik20
4ωµ0

∫
D

(
ε(r′)− εb

εb
+ i

σ(r′)− σb
ωεb

) N∑
n=1

exp
(
2ikbθn · (r− r′)

)
dr′

=
ik20N

4ωµ0

∫
D

(
ε(r′)− εb

εb
+ i

σ(r′)− σb
ωεb

)(
J0(2kb|r− r′|) + 1

N
Φ(2kb, r

′)

)
dr′.

(3.5)
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Finally, similar to the derivation of (3.5), we get

G(r)CG(r)T =
N∑

n=1

M∑
m=1

C

E
(z)
inc(am, r)E

(z)
inc(r,an)

≈ C
N∑

n=1

exp(2ikbθn · r)

= CN

(
J0(2kb|r|) +

1

N

N∑
n=1

∞∑
p=−∞,p ̸=0

ipJp(2kb|r|) exp(ipψ)
)
.

(3.6)

Therefore, by combining (3.4), (3.5), and (3.6), we obtain the result. □

Remark 3.1 (Selection of Constant Zero). Based on Theorem 3.1, we see that since J0(0) = 1
and Jp(0) = 0 for nonzero p, the factor E1(kb, r′)− E2(kb, r′)/N contributes to the detection
of object but the factor of (3.2)

Ψ(kb, r) = J0(2kb|r|) +
1

N

N∑
n=1

∞∑
p=−∞,p ̸=0

ipJp(2kb|r|) exp(ipψ)

does not contribute to object identification. Notice that if the following relation holds

C|Ψ(kb, r)| ≤
k20(N − 1)

4ωµ0

(
εs − εb
εb

+ i
σs − σb
ωεb

)
area(Ds), (3.7)

we can identifyDs through the map of FBFM(r, C) because the disturbing termCNΨ(kb, r) of
(3.2) is dominated by the contributing terms of (3.1). This means that the imaging performance
of FBFM(r, C) depends significantly on the value of C. Unfortunately, we cannot select C to
satisfy (3.7) without a priori information of the objects unless C = 0. Therefore, the selection
of C = 0 guarantees object detection through the map of FBFM(r, 0). Since the value of
FBFM(r, 0) reaches its maximum value when r = r′ ∈ D, we can obtain the following result
of unique determination.

Corollary 3.2 (Unique Determination of Objects). Under the same condition as that applied
for Theorem 3.1, objects Ds can be determined uniquely through the map of FBFM(r, 0).

4. SIMULATION RESULTS WITH SYNTHETIC AND REAL DATA

To demonstrate the theoretical result in Section 3, some numerical simulation results with
synthetic and real data at f = 925MHz are provided here. The following normalized imaging
function was applied throughout the following discussions:

FBFM(r, C) =
|G(r)K(C)G(r)T |

max
r∈Ω

|G(r)K(C)G(r)T |
.
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4.1. Synthetic Data Experiment. First, we considered the imaging result of FBFM(r, C) with
synthetic data generated by CST STUDIO SUITE. To this end, we used N = 16 dipole an-
tennas An equally distributed on a circle with a radius of 0.09m to collect the measurement
data. The region Ω was a circle of radius 0.085m centered at the origin with material prop-
erties given by (εb, σb) = (20ε0, 0.2 S/m), where ε0 = 8.854 × 10−12 F/m denotes vacuum
permittivity.

Figure 1 shows the maps of FBFM(r, C) with various selections of C in the presence of
two circles with radii 0.01m, locations r1 = (0.01m, 0.03m) and r2 = (−0.04m,−0.04m),
and material properties (ε1, σ1) = (55ε0, 1.2 S/m) and (ε2, σ2) = (45ε0, 1.0 S/m). From the
simulation results, we recognize the existence and outline shape of the objects when |C| ≤
0.005. When C = 0.01i, two large peaks appeared at the locations of the two objects, and
another large peak appeared at the origin. Therefore, it is very difficult to distinguish the object.
If C = 0.01, the two objects cannot be identified. Moreover, it is impossible to recognize the
existence of objects when C = 0.05i. Hence, in this example, the existence and shape of
objects can be retrieved through the map of FBFM(r, C) when |C| ≤ 0.005.

(a) C = 0 (b) C = 0.001 (c) C = 0.01

(d) C = 0.005i (e) C = 0.01i (f) C = 0.05i

FIGURE 1. Maps of FBFM(r, C) with various values of C.

4.2. Real Data Experiment. Next, we consider the imaging result of FBFM(r, C) with real
data generated by a microwave machine. We refer to [18] for a detailed description of the
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machine and simulation configuration. The region Ω was set to a circle of radius 0.085m
centered at the origin with material properties (εb, σb) = (78ε0, 0.2 S/m).

Figure 2 shows maps of FBFM(r, C) with various values of C in the presence of the cross
section of a screw driver of radius 0.003 275m located at r = (0.018m,−0.018m). In contrast
to the synthetic data experiment, the existence and outline shape of the object when |C| ≤
0.00001. Notice that when C = 0.00005i, two large peaks appeared at the location of the
object and the origin, making it difficult to identify the object. If |C| ≥ 0.0001, identification
becomes impossible. Hence, in this example, we obtain reliable results when |C| ≤ 0.00001.

(a) C = 0 (b) C = 0.00001 (c) C = 0.0001

(d) C = 0.000005i (e) C = 0.00005i (f) C = 0.0001i

FIGURE 2. Maps of FBFM(r, C) with various values of C.

4.3. Converting Zero Constant. The synthetic and real data experiments showed that we ob-
tain good results if the |C| value is extremely small or close to zero. However, the criteria for
small enough and close to zero is ambiguous, and the selection of constant C depends signif-
icantly on the simulation configuration (applied frequency of operation, material properties,
etc.). Hence, we concluded that as discussed in Remark 3.1, converting unknown data as con-
stant zero (i.e., C = 0) is the best choice for the proper application of the BFM in microwave
imaging.
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5. CONCLUSION

We considered the BFM for a fast identification of small objects from the measured scattered-
field S−parameter data. The imaging function of the BFM was designed by converting the un-
known diagonal elements of the scattering matrix into a fixed constant. From the formula of the
scattered-field S−parameter data, we confirmed that the imaging function can be represented
by an infinite series of Bessel functions of integer order, the antenna settings, the material prop-
erties, and the applied constant. Following the theoretical and numerical results, we concluded
that the imaging performance depends significantly on the value of the constant, and the best
choice for converting unknown data is the zero constant.

In this study, we explored 2D microwave imaging with full-aperture synthetic and real data.
We believe that the analysis and numerical simulation can be extended to the limited-aperture
measurement data [28]; we will explore this aspect in future work. Moreover, extending this
approach to three-dimensional microwave imaging will be a valuable research subject.
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