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SCALAR MULTIPLICATION ON GENERALIZED HUFF

CURVES USING THE SKEW-FROBENIUS MAP

Gyoyong Sohn

Abstract. This paper presents the Frobenius endomorphism on general-

ized Huff curve and provides the characteristic polynomial of the map. By

applying the Frobenius endomorphism on generalized Huff curve, we con-
struct a skew-Frobenius map defined on the quadratic twist of a general-

ized Huff curve. This map offers an efficiently computable homomorphism

for performing scalar multiplication on the generalized Huff curve over a
finite field. As an application, we describe the GLV method combined

with the Frobenius endomorphism over the curve to speed up the scalar

multiplication.

1. Introduction

Elliptic curves are a branch of mathematics that has been studied for almost
a century. In 1985, Koblitz [8] and Miller [9] independently proposed the use of
elliptic curves in cryptography. The elliptic curve cryptosystem is a public key
cryptosystem based on the discrete logarithm problem in the group of points
on a curve. In the elliptic curve cryptosystem, the efficiency essentially depends
on the fundamental operation of scalar multiplication. Generally, the speed of
scalar multiplication depends on finite field operations, curve point operations,
and the representation of the scalar n[12, 5].

There is a vast literature on efficient methods for computationally speed-
ing up scalar multiplication. For elliptic curves, scalar multiplication can be
performed using various methods (a good reference is [1]). If an elliptic curve
admits an efficient endomorphism, its use can speed up scalar multiplication.
In [2], Iijima, Matsuo, Chao and Tsujii presented an efficiently computable ho-
momorphism on elliptic curves using the Frobenius map on the quadratic twists
of an elliptic curve. The Gallant-Lambert-Vanstone (GLV) method provides
suitable, efficiently computable endomorphisms on elliptic curves for speeding
up point multiplication [3].

To obtain faster scalar multiplications, several models of elliptic curves have
been extensively studied, including Edward curves, Jacobi intersections, Jacobi
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quartics, Hessian curves, and others. In 1948, Huff introduced a new elliptic
curve model while studying a Diophantine problem [6]. In [7], Joye, Tibouchi
and Vergnaud studied Huff’s model over fields of odd characteristic and in-
troduced formulas for fast point arithmetic. Wu and Feng in [11] presented a
general Huff form.

In this paper, we present the Frobenius endomorphism on generalized Huff
curves over finite fields and the scalar multiplication using Frobenius expan-
sion. By applying the Frobenius endomorphism to generalized Huff curves, we
construct a skew-Frobenius map defined on the quadratic twist of a generalized
Huff curve. To speed up scalar multiplication on these curves, we use the GLV
method combined with the Frobenius endomorphism.

This paper is organized as follows. Section 1 illustrates some basic notions on
generalized Huff curves and the Frobenius endomorphism. We also provide the
expression of the group law and the birational equivalence between generalized
Huff curve and the Weierstrass equation of an elliptic curve. The second section
describes the Frobenius endomorphism for the curve and some basic properties.

2. Premiminaries

2.1. Generalized Huff Curves

LetK be a field with char(K )̸= 2 andK its algebraic closure. The generalized
Huff curves over K proposed by Wu and Feng in [10] are of the form:

Ha,b : x(ay2 − 1) = y(bx2 − 1),(1)

where a, b ∈ K∗ and ab(a − b) ̸= 0. This model contains the ordinary Huff
curves ax(y2 − 1) = by(x2 − 1) as particular case. We know that every elliptic
curve over the finite field with three points of order 2 is isomorphic to a general
Huff curve.

Let P = (x1, y1) and Q = (x2, y2) be two finite points on Ha,b. The addition
formula denoted by P +Q = (x3, y3) with

x3 =
(x1 + x2)(ay1y2 + 1)

(bx1x2 + 1)(ay1y2 − 1)
and y3 =

(y1 + y2)(bx1x2 + 1)

(bx1x2 − 1)(ay1y2 + 1)
.

In projective coordinates, the generalized Huff curves are defined by

Ha,b : X(aY 2 − Z2) = Y (bX2 − Y 2),

where a, b ∈ K∗ and ab(a − b) ̸= 0. We know that OHa,b
= (0, 0, 1) is an

inflection point of Ha,b and no inflection points with Z = 0. The inverse of point
P = (X,Y, Z) is −P = (X,Y,−Z). Generalized Huff curves has an additive
group structure with OHa,b

. Hence, the three points at infinity (1, 0, 0), (0, 1, 0)
and (a, b, 0) are exactly the three primitive 2-torsion points of Ha,b. The sum
of any two of them is equal to the third one.
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2.2. Frobenius map on elliptic curves

Let Fq be a finite field with char(Fq) ̸= 2 and Fq its algebraic closure. An
elliptic curve E over Fq is defined as

E : y2 = x3 + a2x
2 + a4x+ a6

with the point at infinity OE where a2, a4, a6 ∈ Fq. The q-th power Frobenius
map π of E is defined as

π : E → E

(x, y) 7→ (xq, yq).

By the Hasse’s Theorem, the number of Fqk -rational points on E satisfies

|♯E(Fqk)− qk − 1| ≤ 2
√
qk.

The characteristic polynomial χq ∈ Z[x] of π is given by

χq(x) = x2 − tx+ q, |t| ≤ 2
√
q,

which satisfies

(π2 − [t]π + [q])P = OE

for all P ∈ E(Fq).

3. Frobenius map on Generalized Huff curves

Let Fq be a finite field of char(Fq )̸= 2 and let Ha,b be a generalized Huff curve
over Fq with the points at infinity OHa,b

. We define the q-th power Frobenius
map π̂ of Ha,b

π̂ : Ha,b −→ Ha,b

(x, y) 7−→ (xq, yq)

Now we state the following lemmas to use the main result of this section.

Lemma 3.1. [10] Let K be a field of char(K )̸= 2, let a and b be two elements
of K, with a ̸= b. Then, the curve

X(aY 2 − Z2) = Y (bX2 − Z2)

is isomorphic over K to the elliptic curve given by the Weierstrass equation

V 2W = U(U + aW )(U + bW )

via the transformations σ(X,Y, Z) = (U, V,W ), where U = bX − aY , V =
(b− a)Z and W = Y −X. The inverse application is given by σ−1(U, V,W ) =
(X,Y, Z), with X = U + aW , Y = U + bW , Z = V .

In affine coordintates, the generalized Huff curve x(ay2 − 1) = y(bx2 − 1)
defined over K is isomorphic to the elliptic curve y2 = x(x+ a)(x+ b) over K.
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Lemma 3.2. Let Ha,b be a generalized Huff curve defined over Fq and E be the
elliptic curve over Fq that is isomorphic to Ha,b. Let ♯E(Fq) = q + 1 − t and
let σ be the birational transformation defined as above. Let π be the q-th power
Frobenius endomorphism over E. Define ψ = σ−1πσ. Then

(1) ψ ∈ End(Ha,b), (i.e., ψ is an endomorphism of Ha,b).

(2) For all P ∈ Ha,b(Fq) we have

ψ2(P )− [t]ψ(P ) + [q]P = OHa,b

Proof. First note that σ an isogeny from Ha,b to E and is defined over Fq, that
π is an isogeny from E to itself defined over Fq, and that σ−1 is an isogeny form
E to Ha,b defined over Fq. Hence ψ is an isogeny of Ha,b to itself, and is defined
over Fq. Therefore ψ is a group homomorphism.

For P ∈ Ha,b(Fq), let’s denote σ(P ) = Q ∈ E(Fq). Then we have (π2− [t]π+
[q])Q = OE . Hence,

σ−1(π2 − [t]π + [q])σ(P ) = OHa,b
.

Therefore

ψ2(P )− [t]ψ(P ) + [q]P = OHa,b
.

□

Now we have the main result of this section.

Theorem 3.3. Let Ha,b be a generalized Huff curve defined over a finite field
Fq and ♯Ha,b(Fq) = q + 1− t. Then the Frobenius map of Ha,b satisfies

(π̂2 − [t]π̂ + [q])P = OHa,b
,

for all P ∈ Ha,b(Fq).

Proof. Let E be the elliptic curve over Fq that is isomorphic to Ha,b, and ψ
be the endomorphism of Ha,b in Lemma 3.2. By definition of ψ, for all P =

(x, y) ∈ Ha,b(Fq),

ψ(x, y) = (σ−1πσ)(x, y) = (σ−1π)
(bx− ay

y − x
,
b− a

y − x

)
= σ−1

( (bx− ay)q

(y − x)q
,
(b− a)q

(y − x)q

)
= (xq, yq),

where a, b ∈ Fq.

Hence we have for all P ∈ Ha,b(Fq), ψ(P ) = π̂(P ) and ♯E(Fq) = ♯Ha,b(Fq) =
q + 1− t. Hence by Lemma 3.2, we can complete the proof of Theorem. □
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4. Skew-Frobenius map on quadratic twists of a generalized Huff
curves

In this section, we will construct a skew-Frobenius map on the quadratic twist
of a generalized Huff curve according to the Frobenius map on a generalized Huff
curve.

Let Ha,b be a generalized Huff curve over Fq defined by (1). The quadratic
twist of a generalized Huff curve is

Ht
a,b : x(ay2 − d) = y(bx2 − d)

where a, b, d ∈ F∗
q and ab(a − b) ̸= 0. If d ∈ F∗

q is a non-square, then the map

ϕ is an isomorphism from Ha,b to Ht
a,b over Fq(

√
d). The map ϕ is given by

(x, y) = ( x√
d
, y√

d
). Then we can construct the skew-Frobenius map ψ̂ on Ht

a,b

by computing the map ϕπ̂ϕ−1. The skew-Frobenius map on Ht
a,b is defined by

ψ̂ : Ht
a,b → Ht

a,b, (x, y) 7→ (
√
d
q−1

xq,
√
d
q−1

yq).

Theorem 4.1. Let Ha,b be a generalized Huff curve defined over Fq and Ht
a,b be

a quadratic twist of Ha,b. Let ♯Ha,b(Fq) = q+1− t and let ϕ is an isomorphism

from Ha,b to Ht
a,b over Fq(

√
d). Let π̂ be the q-th power Frobenius map on Ha,b.

Define ψ̂ = ϕπ̂ϕ−1. Then for all P ∈ Ht
a,b(Fq), we have

ψ̂2(P )− [t]ψ̂(P ) + [q]P = OHt
a,b
.

Proof. The proof is similar to Theorem 3.3, we omit it here. □

The GLV method provided an efficiently computable homomorphism for el-
liptic curves where E is defined over Fq with a large characteristic. The follow-
ing map can be used for the GLV method to perform point multiplication on
generalized Huff curves by extending the method in Galbraith et. al. [4].

Theorem 4.2. Let Ha,b be a generalized Huff curve over Fq with q+1−t points.
Let π be the q-th power Frobenius map on Ha,b. Write Ht

a,b for the quadratic

twist of Ha,b over Fq2 and let ϕ : Ha,b → Ht
a,b be the twisting isomorphism

defined over Fq4 . Let ψ = ϕπ̂ϕ−1. Let r|♯Ht
a,b(Fq2) be a prime such that r > 2q.

Let P ∈ Ht
a,b(Fq2)[r]. Then ψ(P ) = [λ]P where λ ∈ Z/rZ satisfies λ2 + 1 ≡ 0

(mod r). Also, we have ψ(P )2 + P = OHt
a,b

.

Proof. Since ϕ and π̂ are group homomorphisms it follows that ψ is too. We
have Ha,b(Fq4) ∼= Ht

a,b(Fq4) as groups.

If r|♯Ht
a,b(Fq2) is prime such that r > 2q, then r ∤ ♯Ha,b(Fq2) = (q + 1 −

t)(q + 1 + t) and r|♯Ht
a,b(Fq4) = ♯Ha,b(Fq2)♯H

t
a,b(Fq2) but r2|♯Ht

a,b(Fq4). This

implies that for P ∈ Ht
a,b(Fq2)[r], ψ(P ) belongs to H

t
a,b(Fq2)[r]. It follows that

for P ∈ Ht
a,b(Fq2)[r], there exists λ ∈ Z such that ψ(P ) = [λ]P .
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By definition, ψ(x, y) = (ϕπ̂)( x√
d
, y√

d
) = ϕ( xq

√
d
q ,

yq

√
d
q ) = (

√
d
1−q

xq,
√
d
1−q

yq)

for P = (x, y) ∈ Ht
a,b(Fq). Also, since xq

2

= x, yq
2

= y for x, y ∈ Fq2 , we have

ψ2(x, y) =
(√dxq2

√
d
q2
,

√
dyq

2

√
d
q2

)
= (−x,−y) = −(x, y).

where d ∈ Fq2 (i.e., dq
2

= d) and
√
d /∈ Fq2 (and so,

√
d
q2

= −
√
d). Therefore,

ψ2(P ) + P = OHt
a,b
.

□

Hence, the above map can be used for the GLV method on generalized Huff
curve.

5. Conclusion

In this paper, we discussed the endomorphism on the generalized Huff curves
defined over finite field. Based on this, we constructed a skew-Frobenius map
defined on the quadratic twist of a generalized Huff curve and demonstrated
how it can accelerate scalar multiplication on this curve.
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