DOI QR코드

DOI QR Code

Fe(II)EDTA2- 흡수액을 이용한 배가스내 NO, SO2 동시 흡수 및 재흡수를 위한 전기화학적 회수기술 연구

Simultaneous Absorption of NO and SO2 in Flue gas Using Fe(II)EDTA2- absorbent and Electrochemical Recovery Technology for Gas Reabsorption

  • 김윤희 (건국대학교 화학공학과) ;
  • 김지율 (건국대학교 화학공학과) ;
  • 김상빈 (건국대학교 화학공학과) ;
  • 주지봉 (건국대학교 화학공학과 )
  • Yoon Hee Kim (Department of Chemical Engineering, Konkuk University) ;
  • Jiyull Kim (Department of Chemical Engineering, Konkuk University) ;
  • Sang Bin Kim (Department of Chemical Engineering, Konkuk University) ;
  • Ji Bong Joo (Department of Chemical Engineering, Konkuk University)
  • 투고 : 2024.08.07
  • 심사 : 2024.09.14
  • 발행 : 2024.09.30

초록

본 연구에서는 배가스에서 배출되는 질소산하물 (NO) 및 황산화물 (SO2)를 동시에 제거를 위하여, 습식 흡수공정과 Fe(II)EDTA2- 흡수제 성능및 재생, 전기증착을 통한 환원제 회수 및 재생된 흡수제를 이용한 재흡수 성능에 대하여 연구하였다. 산소가 존재하는 조건에서 NO와 SO2의 동시흡수 실험한 수행한 결과, 흡수용액 속의 SO2와 O2의 길항적 효과에 의해서, Fe(III)EDTA-와 Fe(II)EDTA-NO2-의 Fe(II)EDTA2-로 재생이 잘 일어나며, 중성의 pH를 유지하는데 도움을 주며, NO2 흡수를 유지시켜, NO와 SO2의 동시 흡수 제거성능을 크게 향상되었다. 또한 Fe(II)EDTA2-흡수제를 환원제인 Zn 금속분말로 재생한 후, 남아 있는 환원제를 회수하기 위해, 전기증착을 수행하였다. 전기증착 과정에서, 4 V의 인가전압에서 가장 높은 Zn 회수효율(약 57.50 %)을 나타냈으며, NO의 총 흡수량도 현저히 향상되었다.

In this study, we investigate wet absorption process and the performance and regeneration of Fe(II)EDTA2- absorbents, electrodeposition of the reducing agent for recovery of metal powder and re-absorption performance using regenerated absorbed for the simultaneous removal of nitrogen oxides (NO) and sulfur oxides (SO2) emitted from flue gas. As a result of a simultaneous absorption experiment of NO and SO2 under the presence of oxygen, the antagonistic effects of SO2 and O2 in the absorption solution resulted in the regeneration of Fe(III)EDTA- and Fe(II)EDTA-NO2- to Fe(II)EDTA2-, inducing the maintained neutral pH and maintained NO2 absorption, thereby greatly improving the simultaneous absorption performance of NO and SO2. In addition, after regenerating the Fe(II)EDTA2- absorbent with Zn metal powder as a reducing agent, electrodeposition was performed to recover the remaining reducing agent. During the electrodeposition process, the high Zn recovery efficiency (approximately 57.50%) was observed at an applied voltage of 4 V, and the total absorption amount of NO was also significantly improved.

키워드

과제정보

본 연구는 정부(과학기술정보통신부)의 재원으로 연구재단의 지원을 받아 수행한 연구 과제입니다. (No. NRF-2022M3J2A1085554).

참고문헌

  1. Aouini, I., Ledoux, A., Estel, L., and Mary, S., "Pilot plant studies for CO2 capture from waste incinerator flue gas using MEA based solvent", Oil Gas Sci. Technol., 69, 1091~1104. (2014). 
  2. Alalwan, H. A., and Alminshid, A. H., "CO2 capturing methods: Chemical looping combustion (CLC) as a promising technique", Science of The Total Environment, 788, 147850. (2021). 
  3. Spatolisano, E., Pellegrini, L. A., de Angelis, A. R., Cattaneo, S., and Roccaro, E., "Ammonia as a Carbon-Free Energy Carrier: NH3 Cracking to H2", Ind Eng Chem Res, 62(28), 10813~10827. (2023). 
  4. Meng, X., Zhao, C., Qin, M., Zhang, M., Dong, D., Long, W., and Bi, M., "Study on chemical kinetics and NO behaviors in pre-chamber jet-induced ignition mode with ammonia", Fuel Processing Technology, 250, 107876. (2023). 
  5. Chien, T. W., Hsueh, H. T., Chu, B. Y., and Chu, H., "Absorption kinetics of NO from simulated flue gas using Fe (II) EDTA solutions", Process Saf Environ Prot, 87, 300~306. (2009). 
  6. Kang, D., and Kim, J.-E., "Fine, ultrafine, and yellow dust: emerging health problems in Korea", J. Korean Med. Sci., 29(5), 621~622. (2014). 
  7. He, F., Zhu, X., Chen, X., and Ding, J., "Performance, mechanism, and kinetics of NO removal by combined ascorbic acid and FeIIEDTA reaction systems", Fuel, 284, 119070. (2021). 
  8. Van der Maas, P., Van den Brink, P., Utomo, S., Klapwijk, B., and Lens, P., "NO removal in continuous BioDeNOx reactors: Fe (II) EDTA2- regeneration, biomass growth, and EDTA degradation", Biotechnology and bioengineering, 94(3), 575~584. (2006). 
  9. Duo, Y., Wang, X., He, J., Zhang, S., Pan, H., Chen, J., and Chen, J., "Simultaneous removal of SO2 and NO by FeII (EDTA) solution: Promotion of Mn powder and mechanism of reduction", Environ Sci Pollut Res, 26(28), 28808~28816. (2019). 
  10. Lefan, M., Zhiquan, T., and Junfeng, Z., "Removal of NOx from flue gas with iron filings reduction following complex absorption in ferrous chelates aqueous solutions", J Air Waste Manage Assoc, 54(12), 1543~1549. (2004). 
  11. Zhu, H.-S., Mao, Y.-P., Yang, X.-J., Chen, Y., Long, X.-l., and Yuan, W.-k., "Simultaneous absorption of NO and SO2 into FeII-EDTA solution coupled with the FeII-EDTA regeneration catalyzed by activated carbon", Separation and Purification Technology, 74(1), 1~6. (2010). 
  12. Suchecki, T. T., Mathews, B., and Kumazawa, H., "Kinetic study of ambient-temperature reduction of FeIIIedta by Na2S2O4", Ind Eng Chem Res, 44(12), 4249~4253. (2005). 
  13. Adewuyi, Y. G., and Khan, M. A., "Nitric oxide removal from flue gas by combined persulfate and ferrous-EDTA solutions: Effects of persulfate and EDTA concentrations, temperature, pH and SO2", Chemical Engineering Journal, 304, 793~807. (2016). 
  14. Chen, M. X., Zhou, J. T., Zhang, Y., Wang, X. J., Shi, Z., and Wang, X. W., "Fe(III)EDTA and Fe(II)EDTA-NO reduction by a sulfate reducing bacterium in NO and SO2 scrubbing liquor", World J Microb Biot, 31, 527~534. (2015). 
  15. He, F., Deng, X., and Chen, M., "Evaluation of Fe (II) EDTA-NO reduction by zinc powder in wet flue gas denitrification technology with Fe (II) EDTA", Fuel, 199, 523~531. (2017). 
  16. Han, J., Yao, X., Qin, L., Jiang, M., Xing, F., and Chen, W., "Simultaneous removing SO2 and NO by ammonia-Fe EDTA solution coupled with Iron II regeneration", Int J Environ Res, 10(4), 519~524. (2016). 
  17. Jiang, W., Wang, X., Xu, Q., Xiao, J., and Wei, X., "The regeneration of Fe-EDTA denitration solutions by nanoscale zero-valent iron", RSC Adv, 9(1), 132~138. (2019). 
  18. He, F., Qian, Y., and Xu, J., "Performance, mechanism, and kinetics of Fe (III) EDTA reduction by thiourea dioxide", Energy & Fuels, 33(4), 3331~3338. (2019). 
  19. Zhu, X., He, F., Xia, M., Liu, H., and Ding, J., "Evaluation of Fe (iii) EDTA reduction with ascorbic acid in a wet denitrification system", RSC Adv, 9(42), 24386~24393. (2019). 
  20. Messele, S. A., Bengoa, C., Stuber, F. E., Giralt, J., Fortuny, A., and Fabregat, A., and Font, J., "Enhanced Degradation of Phenol by a Fenton-Like System (Fe/EDTA/H2O2) at Circumneutral pH", Catalysts, 9(5), 474. (2019). 
  21. Asghar, U., Rafiq, S., Anwar, A., Iqbal, T., Ahmed, A., Jamil, F., Khurram, M. S., Akbar, M. M., Farooq, A., Shah, N. S., and Park, Y.-K., "Review on the progress in emission control technologies for the abatement of CO2, SOx and NOx from fuel combustion", Journal of Environmental Chemical Engineering, 9(5), 106064. (2021). 
  22. Scala, F., Lancia, A., Nigro, R., and Volpicelli, G., "Spray-dry desulfurization of flue gas from heavy oil combustion", J Air Waste Manage Assoc, 55(1), 20~29. (2005). 
  23. Boniface, J., Shi, Q., Li, Y. Q., Cheung, J. L., Rattigan, O. V., Davidovits, P., Worsnop, D. R., Jayne, J. T., and Kolb, C. E., "Uptake of Gas-Phase SO2, H2S, and CO2 by Aqueous Solutions", The Journal of Physical Chemistry A, 104(32), 7502~7510. (2000). 
  24. Narita, E., Sato, T., Shioya, T., Ikari, M., and Okabe, T., "Formation of hydroxylamidobis (sulfate) ion by the absorption of nitric oxide in aqueous solutions of sodium sulfite containing iron (II)-EDTA complex", Ind. Eng. Chem. Res. Dev., 23(2), 262~265. (1984). 
  25. Adewuyi, Y. G., and Khan, M. A., "Nitric oxide removal by combined persulfate and ferrous-EDTA reaction systems", Chemical Engineering Journal, 281, 575~587. (2015). 
  26. Dong, X. Y., Zhang, Y., Zhou, J. T., Chen, M. X., Wang, X. J., and Shi, Z., "Fe(II)EDTA-NO reduction coupled with Fe(II)EDTA oxidation by a nitrate- and Fe(III)-reducing bacterium", Bioresource Technol, 138, 339~344. (2013). 
  27. Norvell, W., and Lindsay, W., Reactions of EDTA complexes of Fe, Zn, Mn, and Cu with soils, Wiley Online Library. (1969). 
  28. Hegde, A. C., Venkatakrishna, K., and Eliaz, N., "Electrodeposition of Zn-Ni, Zn-Fe and Zn-Ni-Fe alloys", Surface and Coatings Technology, 205(7), 2031~2041. (2010). 
  29. Sillen, L., and Martell, A., Stability Constants of Metal Ion Complexes, 1964, and its supplement No. 1, Chemical Society, London. (1971).