DOI QR코드

DOI QR Code

Enhancing mechanical performance of steel-tube-encased HSC composite walls: Experimental investigation and analytical modeling

  • ZY Chen (School of Science, Guangdong University of Petrochemical Technology) ;
  • Ruei-Yuan Wang (School of Science, Guangdong University of Petrochemical Technology) ;
  • Yahui Meng (School of Science, Guangdong University of Petrochemical Technology) ;
  • Huakun Wu (School of Computer Science, Guangdong Polytechnic Normal University) ;
  • Lai B (School of Science, Guangdong University of Petrochemical Technology) ;
  • Timothy Chen (Division of Engineering and Applied Science, California Institute of Technology)
  • 투고 : 2024.03.22
  • 심사 : 2024.09.19
  • 발행 : 2024.09.25

초록

This paper discusses the study of concrete composite walls of algorithmic modeling, in which steel tubes are embedded. The load-bearing capacity of STHC composite walls increases with the increase of axial load coefficient, but its ductility decreases. The load-bearing capacity can be improved by increasing the strength of the steel pipes; however, the elasticity of STHC composite walls was found to be slightly reduced. As the shear stress coefficient increases, the load-bearing capacity of STHC composite walls decreases significantly, while the deformation resistance increases. By analyzing actual cases, we demonstrate the effectiveness of the research results in real situations and enhance the persuasiveness of the conclusions. The research results can provide a basis for future research, inspire more explorations on seismic design and construction, and further advance the development of this field. Emphasize the importance of research results, promote interdisciplinary cooperation in the fields of structural engineering, earthquake engineering, and materials science, and improve overall seismic resistance. The emphasis on these aspects will help highlight the practical impact of the research results, further strengthen the conclusions, and promote progress in the design and construction of earthquake-resistant structures. The goals of this work are access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient architecture, sustainable planning and management of human settlements. Simulation results of linear and nonlinear structures show that this method can detect structural parameters and their changes due to damage and unknown disturbances. Therefore, it is believed that with the further development of fuzzy neural network artificial intelligence theory, this goal will be achieved in the near future.

키워드

참고문헌

  1. Bai, L., Zhang, C. and Xiong, E. (2019), "Investigations on the shear mechanism of steel tube rein forced concrete shear walls with a low shear span ratio", KSCE J. Civ. Eng., 23(7), 2983-2996. https://doi.org/10.1007/s12205-019-1170-3.
  2. Cao, J., Du, J., Zhang, H., He, H., Bao, C. and Liu, Y. (2024), "Mechanical properties of multi-bolted Glulam connection with slotted-in steel plates", Construct. Build. Mater., 433, 136608. doi: https://doi.org/10.1016/j.conbuildmat.2024.136608
  3. Chen, R., Zhang, H., Hao, X., Yu, H., Shi, T., Zhou, H. and Wang, P. (2024), "Experimental study on ultimate bearing capacity of short thin-walled steel tubes reinforced with high-ductility concrete", Structures, 68, 107109. https://doi.org/10.1016/j.istruc.2024.107109.
  4. Gao, S., Jie, Y., Shao-bo K., Fangyi, L. and Xiaona, S. (2024), "Experimental and numerical studies on deformation performance of square concrete-filled steel tubular columns under repeated lateral impacts", Eng. Struct., 308, https://doi.org/10.1016/j.engstruct.2024.117909.
  5. Ghasemi, M., Zhang, C., Khorshidi, H., Zhu, L. and Hsiao, P. (2023), "Seismic upgrading of existing RC frames with displacement-restraint cable bracing", Eng. Struct., 282, 115764. https://doi.org/10.1016/j.engstruct.2023.115764.
  6. Guo, M., Huang, H., Zhang, W., Xue, C. and Huang, M. (2022), "Assessment of RC frame capacity subjected to a loss of corner column", J. Struct. Eng., 148(9). https://doi.org/10.1061/(ASCE)ST.1943-541X.0003423.
  7. He, L., Chen, B., Liu, Q., Chen, H., Li, H., Chow, W. T. and Pan, J. (2024), "A quasi-exponential distribution of interfacial voids and its effect on the interlayer strength of 3D printed concrete", Additive Manufact., 89, 104296. https://doi.org/10.1016/j.addma.2024.104296.
  8. He, L., Pan, J., Hee, Y. S., Chen, H., Li, L. G., Panda, B. and Chow, W.T. (2024), "Development of novel concave and convex trowels for higher interlayer strength of 3D printed cement paste", Case Studies Construct. Mater., 21, e03745. https://doi.org/10.1016/j.cscm.2024.e03745
  9. Huang, H., Guo, M., Zhang, W., Zeng, J., Yang, K. and Bai, H. (2021), "Numerical investigation on the bearing capacity of RC columns strengthened by HPFL-BSP under combined loadings", J. Build. Eng., 39, 102266. https://doi.org/10.1016/j.jobe.2021.102266.
  10. Huang, H., Li, M., Yuan, Y. and Bai, H. (2023), "Experimental research on the seismic performance of precast concrete frame with replaceable artificial controllable plastic hinges", J. Struct. Eng., 149(1), 4022222. https://doi.org/10.1061/JSENDH.STENG-11648.
  11. Huang, H., Li, M., Zhang, W. and Yuan, Y. (2022), "Seismic behavior of a friction-type artificial plastic hinge for the precast beam-column connection", Archives Civil Mech. Eng., 22(4), 201. https://doi.org/10.1007/s43452-022-00526-1.
  12. Huang, H., Yuan, Y., Zhang, W. and Li, M. (2021), "Seismic behavior of a replaceable artificial controllable plastic hinge for precast concrete beam-column joint", Eng. Struct., 245, 112848. https://doi.org/10.1016/j.engstruct.2021.112848.
  13. Li, X., Zhang, J. and Cao, W. (2020), "Hysteretic behavior of high-strength concrete shear walls with high-strength steel bars: Experimental study and modelling", Eng. Struct., 214, https://doi.org/10.1016/j.engstruct.2020.110600.
  14. Liang, W., Dong, J. and Wang, Q. (2018), "Axial compressive behavior of concrete-filled steel tube columns with stiffeners", Steel Comp. Struct., 29(2), 151-159. https://doi.org/10.12989/scs.2018.29.2.151.
  15. Liao, F.Y., Han, L.H. and Tao, Z. (2009), "Seismic behaviour of circular CFST columns and RC shear wall mixed structures: experiment", J. Constr. Steel Res., 65(8-9), 1582-1596. https://doi.org/10.1016/j.jcsr.2009.04.023.
  16. Liu, X., Liu, X. and Zhang, Z. (2024), "Application of red mud in carbon capture, utilization and storage (CCUS) technology", Renew. Sustain. Energy Rev., 202, 114683. https://doi.org/10.1016/j.rser.2024.114683.
  17. Lu, D., Liang, J., Du, X., Ma, C. and Gao, Z. (2019), "Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule", Compute. Geotech., 105, 277-290. https://doi.org/10.1016/j.compgeo.2018.10.004.
  18. Lu, D., Meng, F., Zhou, X., Zhuo, Y., Gao, Z. and Du, X. (2023), "A dynamic elastoplastic model of concrete based on a modeling method with environmental factors as constitutive variables", J. Eng. Mech., 149(12). https://doi.org/10.1061/JENMDT.EMENG-7206.
  19. Md Motiur, R., Tahmina Tasnim, N. and Dookie, K. (2021), "ReView: Finite element model (FEM) visualization and post-processing tool for OpenSees", SoftwareX, 15, https://doi.org/10.1016/j.softx.2021.100751.
  20. Shu, J., Zhang, X., Li, W., Zeng, Z., Zhang, H. and Duan, Y. (2024), "Point cloud and machine learning-based automated recognition and measurement of corrugated pipes and rebars for large precast concrete beams.", Autom. Construct., 165, 105493. https://doi.org/10.1016/j.autcon.2024.105493.
  21. Song, X., Wang, W., Deng, Y., Su, Y., Jia, F., Zaheer, Q. and Long, X. (2024), "Data-driven modeling for residual velocity of projectile penetrating reinforced concrete slabs", Eng. Struct., 306, 117761. https://doi.org/10.1016/j.engstruct.2024.117761.
  22. Sun, L., Wang, C., Zhang, C., Yang, Z., Li, C. and Qiao, P. (2023), "Experimental investigation on the bond performance of sea sand coral concrete with FRP bar reinforcement for marine environments", Adv. Struct. Eng., 26(3), 533-546. https://doi.org/10.1177/13694332221131153.
  23. Wang, Y. and Sigmund, O. (2024), "Topology optimization of multi-material active structures to reduce energy consumption and carbon footprint", Struct. Multidiscipl. Optimiz., 67(1), 5. https://doi.org/10.1007/s00158-023-03698-3.
  24. Wei, J., Ying, H., Yang, Y., Zhang, W., Yuan, H. and Zhou, J. (2023), "Seismic performance of concrete-filled steel tubular composite columns with ultra high performance concrete plates", Eng. Struct., 278, 115500. https://doi.org/10.1016/j.engstruct.2022.115500.
  25. Ying, Z.G., Ni, Y.Q. and Duan, Y.F. (2019), "Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations", Smart Struct. Syst., 23, 641-651. https://doi.org/10.12989/sss.2019.23.6.641.
  26. Zhang, J., Li, X., Yu, C. and Cao, W. (2021), "Cyclic behavior of high-strength concrete shear walls with high-strength reinforcements and boundary CFST columns", J. Constr. Steel Res., 182(4), https://doi.org /10.1016/j.jcsr.2021.106692.
  27. Zhang, W., Lin, J., Huang, Y., Lin, B. and Kang, S. (2024), "Temperature-dependent debonding behavior of adhesively bonded CFRP-UHPC interface", Compos. Struct., 340, 118200. https://doi.org/10.1016/j.compstruct.2024.118200.
  28. Zhao, N., Wang, Y., Han, Q. and Su, H. (2020), "Bearing capacity of composite shear wall incorporating a concrete-filled steel tube boundary and column-type reinforced wall", Adv. Struct., 23(10), 2188-2203. https://doi.org/10.1177/1369433220911156.
  29. Zhao, R., Li, C. and Guan, X. (2024), "Advances in modeling surface chloride concentrations in concrete serving in the marine environment: A mini review", Buildings, 14(6), 1879. https://doi.org/10.3390/buildings14061879.
  30. Zhou, J., Fang, X. and Yao, Z. (2018), "Mechanical behavior of a steel tube-confined high-strength concrete shear wall under combined tensile and shear loading", Eng. Struct., 171, 673-685. https://doi.org/10.1016 /j.engstruct.2018.06.024. https://doi.org/10.1016/j.engstruct.2018.06.024
  31. Zhou, X., Lu, D., Du, X., Wang, G. and Meng, F. (2020), "A 3D non-orthogonal plastic damage model for concrete", Comput. Meth. Appl. Mech. Eng., 360, 112716. https://doi.org/10.1016/j.cma.2019.112716.