DOI QR코드

DOI QR Code

Enhanced Electrochemical Detection of Heavy Metal Ions via Post-synthetic Schiff Base Modification of MWCNT-MOF Composites

  • Yeon-Joo Kim (Division of Materials Science and Engineering, Hanyang University) ;
  • Seung-Ho Choi (Division of Materials Science and Engineering, Hanyang University) ;
  • Seon-Jin Choi (Division of Materials Science and Engineering, Hanyang University)
  • Received : 2024.09.02
  • Accepted : 2024.09.20
  • Published : 2024.09.30

Abstract

In this study, we present a novel approach to improve electrochemical heavy metal ion (HMI) sensing responses via post-synthetic modification of carbon nanotube-based metal-organic framework (MOF) nanocomposites with a Schiff base. UiO66-NH2 was employed as the MOF and incorporated with multi-walled carbon nanotubes (MWCNT) through in-situ growth, enhancing the electrical conductivity of the MWCNT-UiO66-NH2 composite. Subsequently, the Schiff base, which has been proven to be an excellent ligand for metal ion detection, was functionalized onto MWCNT-UiO66-NH2 via post-synthetic modification to improve its HMI absorption capacity. To evaluate the effect of the Schiff base on HMI detection capacity, electrochemical sensing of Cd2+, Pb2+, Cu2+, and Hg2+ was performed in an aqueous solution utilizing the MWCNT-UiO66-Schiff modified electrode as well as the bare electrode. Individual differential pulse anodic stripping voltammetry results revealed that the modified electrode with MWCNT-UiO66-Schiff exhibited increased HMI sensing properties, especially with 1.82-fold improvement in average oxidation currents toward 10 µM of Cu2+ compared to that for a bare glassy carbon electrode. The selective Cu2+-sensing properties of MWCNT-UiO66-Schiff were reflected in the highly selective Cu2-binding affinity of the Schiff base-containing model molecules compared to those of Cd2+, Hg2+, and Pb2+. Our work provides a new strategy for improving the sensing properties of electrochemical HMI sensors by the post-synthetic modification of MWCNT-UiO66 with a Schiff base.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No. RS-2023-00236572 and RS-2024-00407282). This work was also supported by the U.S. Army Combat Capabilities Development Command Soldier Center (DEVCOM SC) and the International Technology Center Pacific (ITC-PAC) Global Research Project under contract FA520922C0008 and conducted at Hanyang University. This research was supported by the Brain Korea 21 Fostering Outstanding Universities for Research (BK21 FOUR) project of the National Research Foundation of Korea Grant.

References

  1. R. McRae, P. Bagchi, S. Sumalekshmy, and C. J. Fahrni, "In situ imaging of metals in cells and tissues", Chem. Rev., Vol. 109, No. 10, pp. 4780-4827, 2009. 
  2. E. L. Que, D. W. Domaille, and C. J. Chang, "Metals in neurobiology: probing their chemistry and biology with molecular imaging", Chem. Rev., Vo. 108, No. 5, pp. 1517-1549, 2008. 
  3. L. A. Malik, A. Bashir, A. Qureashi, and A. H. Pandith, "Detection and removal of heavy metal ions: a review", Environ. Chem. Lett., Vol. 17, No. 4, pp. 1495-1521, 2019. 
  4. D. T. Quang and J. S. Kim, "Fluoro-and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens", Chem. Rev., Vol. 110, No. 10, pp. 6280-6301, 2010. 
  5. D. W. Domaille, E. L. Que, and C. J. Chang, "Synthetic fluorescent sensors for studying the cell biology of metals", Nat. Chem. Biol., Vol. 4, No. 3, pp. 168-175, 2008. 
  6. D. W. Domaille, L. Zeng, and C. J. Chang, "Visualizing ascorbate-triggered release of labile copper within living cells using a ratiometric fluorescent sensor", J. Am. Chem. Soc., Vol. 132, No. 4, pp. 1194-1195, 2010. 
  7. C. Bargossi, M. C. Fiorini, M. Montalti, L. Prodi, and N. Zaccheroni, "Recent developments in transition metal ion detection by luminescent chemosensors", Coord. Chem. Rev., Vol. 208, No. 1, pp. 17-32, 2000. 
  8. V. N. Losev, O. V. Buyko, A. K. Trofimchuk, and O. N. Zuy, "Silica sequentially modified with polyhexamethylene guanidine and Arsenazo I for preconcentration and ICP-OES determination of metals in natural waters", Microchem. J., Vol. 123, pp. 84-89, 2015. 
  9. X. Yuan, K. H. Ling, and C. W. Keung, "The analysis of heavy metals in Chinese herbal medicine by flow injection-mercury hydride system and graphite furnace atomic absorption spectrometry", Phytochem. Anal., Vol. 20, No. 4, pp. 293-297, 2009. 
  10. F. Yarur, J.-R. Macairan, and R. Naccache, "Ratiometric detection of heavy metal ions using fluorescent carbon dots", Environ. Sci. Nano., Vol. 6, No. 4, pp. 1121-1130, 2019. 
  11. G. Aragay and A. Merkoci, "Nanomaterials application in electrochemical detection of heavy metals", Electrochim. Acta., Vol. 84, pp. 49-61, 2012. 
  12. L. Pujol, D. Evrard, K. Groenen-Serrano, M. Freyssinier, A. Ruffien-Cizsak, and P. Gros, "Electrochemical sensors and devices for heavy metals assay in water: the French groups' contribution", Front. Chem., Vol. 2, p. 19, 2014. 
  13. M. B. Gumpu, S. Sethuraman, U. M. Krishnan, and J. B. B. Rayappan, "A review on detection of heavy metal ions in water-an electrochemical approach", Sens. Actuators B Chem., Vol. 213, pp. 515-533, 2015. 
  14. A. Sbartai, P. Namour, A. Errachid, J. Krejci, R. Sejnohova, L. Renaud, M. Larbi Hamlaoui, A.-S. Loir, F. Garrelie, and C. Donnet, "Electrochemical boron-doped diamond film microcells micromachined with femtosecond laser: application to the determination of water framework directive metals", Anal. Chem., Vol. 84, No. 11, pp. 4805-4811, 2012. 
  15. Q. Ding, C. Li, H. Wang, C. Xu, and H. Kuang, "Electrochemical detection of heavy metal ions in water", Chem. Commun., Vol. 57, No. 59, pp. 7215-7231, 2021. 
  16. Y. Lu, X. Liang, C. Niyungeko, J. Zhou, J. Xu, and G. Tian, "A review of the identification and detection of heavy metal ions in the environment by voltammetry", Talanta, Vol. 178, pp. 324-338, 2018. 
  17. C. Huangfu, L. Fu, Y. Li, X. Li, H. Du, and J. Ye, "Sensitive Stripping Determination of Cadmium (II) and Lead (II) on Disposable Graphene Modified Screen?Printed Electrode", Electroanalysis, Vol. 25, No. 9, pp. 2238-2243, 2013. 
  18. J. Wen, Y. Fang, and G. Zeng, "Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal-organic frameworks: a review of studies from the last decade", Chemosphere, Vol. 201, pp. 627-643, 2018. 
  19. E. L. Wong, E. Chow, and J. J. Gooding, "The electrochemical detection of cadmium using surface-immobilized DNA", Electrochem. Commun., Vol. 9, No. 4, pp. 845-849, 2007. 
  20. W. S. Chai, J. Y. Cheun, P. S. Kumar, M. Mubashir, Z. Majeed, F. Banat, S.-H. Ho, and P. L. Show, "A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application", J. Clean. Prod., Vol. 296, pp. 126589, 2021. 
  21. C. Wang, X. Liu, N. K. Demir, J. P. Chen, and K. Li, "Applications of water stable metal-organic frameworks", Chem. Soc. Rev., Vol. 45, No. 18, pp. 5107-5134, 2016. 
  22. A. C. Ekennia, A. A. Osowole, L. O. Olasunkanmi, D. C. Onwudiwe, and E. E. Ebenso, "Coordination behaviours of new (bidentate N, O-chelating) Schiff bases towards copper (II) and nickel (II) metal ions: synthesis, characterization, antimicrobial, antioxidant, and DFT studies", Res. Chem. Intermed., Vol. 43, pp. 3787-3811, 2017. 
  23. Z. H. Chohan, A. Munawar, and C. T. Supuran, "Transition Metal Ion Complexes of Schiff?bases. Synthesis, Characterization and Antibacterial Properties", Met. Based. Drugs., Vol. 8, No. 3, pp. 137-143, 2001. 
  24. G. Yuan, Y. Tian, J. Liu, H. Tu, J. Liao, J. Yang, Y. Yang, D. Wang, and N. Liu, "Schiff base anchored on metal-organic framework for Co (II) removal from aqueous solution", Chem. Eng. J., Vol. 326, pp. 691-699, 2017. 
  25. M. Kaur, S. Kumar, M. Yusuf, J. Lee, R. J. Brown, K.-H. Kim, and A. K. Malik, "Post-synthetic modification of luminescent metal-organic frameworks using schiff base complexes for biological and chemical sensing", Coord. Chem. Rev., Vol. 449, pp. 214214, 2021. 
  26. X. Zhang, Y. Xu, and B. Ye, "An efficient electrochemical glucose sensor based on porous nickel-based metal organic framework/carbon nanotubes composite (Ni-MOF/CNTs)", J. Alloys Compd., Vol. 767, pp. 651-656, 2018. 
  27. H. Miyasaka, "Control of charge transfer in donor/acceptor metal-organic frameworks", Acc. Chem. Res., Vol. 46, No. 2, pp. 248-257, 2013. 
  28. X. Wan, H. Du, D. Tuo, X. Qi, T. Wang, J. Wu, and G. Li, "Uio-66/carboxylated multiwalled carbon nanotube composites for highly efficient and stable voltammetric sensors for gatifloxacin", ACS Appl. Nano. Mater., Vol. 6, No. 20, pp. 19403-19413, 2023. 
  29. X.-W. Liu, T.-J. Sun, J.-L. Hu, and S.-D. Wang, "Composites of metal-organic frameworks and carbon-based materials: preparations, functionalities and applications", J. Mater. Chem. A., Vol. 4, No. 10, pp. 3584-3616, 2016. 
  30. W. Liang, B. Wang, J. Cheng, D. Xiao, Z. Xie, and J. Zhao, "3D, eco-friendly metal-organic frameworks@ carbon nanotube aerogels composite materials for removal of pesticides in water", J. Hazard. Mater., Vol. 401, p. 123718, 2021. 
  31. L. Ge, Y. Yang, L. Wang, W. Zhou, R. De Marco, Z. Chen, J. Zou, and Z. Zhu, "High activity electrocatalysts from metal-organic framework-carbon nanotube templates for the oxygen reduction reaction", Carbon., Vol. 82, pp. 417-424, 2015. 
  32. D. D. Chronopoulos, H. Saini, I. Tantis, R. Zboril, K. Jayaramulu, and M. Otyepka, "Carbon nanotube based metal-organic framework hybrids from fundamentals toward applications", Small., Vol. 18, No. 4, p. 2104628, 2022. 
  33. H. Saleem, U. Rafique, and R. P. Davies, "Investigations on post-synthetically modified UiO-66-NH2 for the adsorptive removal of heavy metal ions from aqueous solution", Micropor. Mesopor. Mater., Vol. 221, pp. 238-244, 2016. 
  34. S.-Y. Zhu and B. Yan, "A novel covalent post-synthetically modified MOF hybrid as a sensitive and selective fluorescent probe for Al3+ detection in aqueous media", Dalton Trans., Vol. 47, No. 5, pp. 1674-1681, 2018. 
  35. S. Wang, S. Hou, C. Wu, Y. Zhao, and X. Ma, "RuCl3 anchored onto post-synthetic modification MIL-101 (Cr)-NH2 as heterogeneous catalyst for hydrogenation of CO2 to formic acid", Chin. Chem. Lett., Vol. 30, No. 2, pp. 398-402, 2019. 
  36. R. Chen, C.-a. Tao, Z. Zhang, X. Chen, Z. Liu, and J. Wang, "Layer-by-layer fabrication of core-shell Fe3O4@ UiO-66-NH2 with high catalytic reactivity toward the hydrolysis of chemical warfare agent simulants", ACS Appl. Mater. Interfaces., Vol. 11, No. 46, pp. 43156-43165, 2019. 
  37. J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, and K. P. Lillerud, "A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability", J. Am. Chem. Soc., Vol. 130, No. 42, pp. 13850-13851, 2008. 
  38. X. Han, Z. Meng, H. Zhang, and J. Zheng, "Fullerene-based anodic stripping voltammetry for simultaneous determination of Hg (II), Cu (II), Pb (II) and Cd (II) in foodstuff", Microchim. Acta., Vol. 185, pp. 1-9, 2018. 
  39. P. Veerakumar, V. Veeramani, S.-M. Chen, R. Madhu, and S.-B. Liu, "Palladium nanoparticle incorporated porous activated carbon: electrochemical detection of toxic metal ions", ACS Appl. Mater. Interfaces., Vol. 8, No. 2, pp. 1319-1326, 2016.