DOI QR코드

DOI QR Code

InGaZnO Thin-Film Transistor-based pH Sensor with Parylene-C Gate Dielectric

  • Gwang-Eun Choi (School of Electrical and Computer Engineering, University of Seoul) ;
  • Min-Joon Kim (School of Electrical and Computer Engineering, University of Seoul) ;
  • Ra-Yeong Park (School of Electrical and Computer Engineering, University of Seoul) ;
  • Yoon Kim (School of Electrical and Computer Engineering, University of Seoul) ;
  • Dong-Wook Park (School of Electrical and Computer Engineering, University of Seoul)
  • 투고 : 2024.08.07
  • 심사 : 2024.09.01
  • 발행 : 2024.09.30

초록

The measurement of pH is of significant importance in chemistry, life sciences, and environmental monitoring. Unlike conventional pH sensors that utilize glass electrodes, thin-film transistor (TFT)-based pH sensors offer distinct advantages, including enhanced response speed and additional circuit functions. In this study, we developed a pH sensor that incorporates biocompatible parylene-C as both the substrate and sensing layer, thereby enhancing flexibility, transparency, and biological compatibility. We conducted tests to measure the voltage-current characteristics of the pH solutions and assessed their performance in terms of drift and hysteresis. Using InGaZnO (IGZO) as the channel material, our pH sensor demonstrated an average sensitivity of approximately 82 mV/pH, albeit with certain drift limitations. The initial pH measurements exhibited good reversibility over time. IGZO- and parylene-C-based TFT pH sensors are well suited for various applications, including wearable health monitoring, owing to their flexibility and biocompatibility.

키워드

과제정보

This work was supported by the 2023 Sabbatical Year Research Grant from the University of Seoul. It is also partly supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0017011, HRD Program for Industrial Innovation).

참고문헌

  1. M. I. Khan, K. Mukherjee, R. Shoukat, and H. Dong, "A review on pH sensitive materials for sensors and detection methods", Microsyst. Technol., Vol. 23, pp. 4391-4404, 2017.
  2. M. T. Ghoneim, A. Nguyen, N. Dereje, J. Huang, G. C. Moore, P. J. Murzynowski, and C. Dagdeviren, "Recent progress in electrochemical pH-sensing materials and configurations for biomedical applications", Chem. Rev., Vol. 119, No. 8, pp. 5248-5297, 2019.
  3. E. Prats-Alfonso, L. Abad, N. Casan-Pastor, J. Gonzalo-Ruiz, and E. Baldrich, "Iridium oxide pH sensor for biomedical applications. Case urea-urease in real urine samples", Biosens. Bioelectron., Vol. 39, No. 1, pp. 163-169, 2013.
  4. C. A Lindino and L. O. S. Bulhoes, "The potentiometric response of chemically modified electrodes", Anal. Chim. Acta., Vol. 334, No. 3, pp. 317-322, 1996.
  5. P. Bergveld, "Development of an ion-sensitive solid-state device for neurophysiological measurements", IEEE Trans. Biomed. Eng.., Vol. 1, pp. 70-71, 1970.
  6. Z. Dong, U. C. Wejinya, and I. H. Elhajj, "Fabrication and testing of ISFET based pH sensors for microliter target solutions", Sens. Actuators A Phys., Vol. 194, pp. 181-187, 2013.
  7. S. Sinha and T. Pal, "A comprehensive review of FET-based pH sensors: materials, fabrication technologies, and modeling", Electrochem. Sci. Adv., Vol. 2, No. 5, p. e2100147, 2022.
  8. G. Cai, L. Qiang, P. Yang, Z. Chen, Y. Zhuo, Y. Li, Y. Pei, and G. Wang, "High-sensitivity pH sensor based on electrolyte-gated In2O3 TFT", IEEE Electron Device Lett., Vol. 39, No. 9, pp. 1409-1412, 2018.
  9. N. Liu, Y. Liu, L. Zhu, Y. Shi, and Q. Wan, "Low-cost pH sensors based on low-voltage oxide-based electric-double-layer thin film transistors", IEEE Electron Device Lett., Vol. 35, No. 4, pp. 482-484, 2014.
  10. W. Tang, C. Jiang, Q. Li, W. Hu, L. Feng, Y. Huang, J. Zhao, S. Chen, and X. Guo, "Low-voltage pH sensor tag based on all solution processed organic field-effect transistor", IEEE Electron Device Lett., Vol. 37, No. 8, pp. 1002-1005, 2016.
  11. N. Kumar, J. Kumar, and S. Panda, "Enhanced pH sensitivity over the Nernst limit of electrolyte gated a-IGZO thin film transistor using branched polyethylenimine", RSC Adv., Vol. 6, No. 13, pp. 10810-10815, 2016.
  12. T. Trantidou, D. J. Payne, V. Tsiligkiridis, Y. C. Chang, C. Toumazou, and T. Prodromakis, "The dual role of Parylene C in chemical sensing: Acting as an encapsulant and as a sensing membrane for pH monitoring applications", Sens. Actuators B Chem., Vol. 186, pp. 1-8, 2013.
  13. T. Trantidou, M. Tariq, C. M. Terracciano, C. Toumazou, and T. Prodromakis, "Parylene C-based flexible electronics for pH monitoring applications", Sensors., Vol. 14, No. 7, pp. 11629-11639, 2014.
  14. C. H. Lu, T. H. Hou, and T. M. Pan, "Low-voltage InGaZnO ion-sensitive thin-film transistors fabricated by low-temperature process", IEEE Trans. Electron. Devices, Vol. 63, No. 12, pp. 5060-5063, 2016.
  15. D. Bhatt, S. Kumar, and S. Panda, "Amorphous IGZO field effect transistor based flexible chemical and biosensors for label free detection", Flex. Print. Electron., Vol. 5, No. 1, p. 014010, 2020.
  16. M. M. R. Howlader and T. E. Doyle, "Low temperature nanointegration for emerging biomedical applications", Microelectron. Reliab., Vol. 52, No. 2, pp. 361-374, 2012.
  17. H. L. Kang, S. Yoon, D. Hong, S. Song, Y. J. Kim, W. H. Kim, W. K. Seong, and K. N. Lee, "Verification of operating principle of nano field-effect transistor biosensor with an extended gate electrode", BioChip J., Vol. 14, pp. 381-389, 2020.
  18. S. Bhatt, E. Masterson, T. Zhu, J. Eizadi, J. George, N. Graupe, A. Vareberg, J. Phillips, I. Bok, M. Dwyer, A. Ashtiani, and A. Hai, "Wireless in vivo recording of cortical activity by an ion-sensitive field effect transistor", Sens. Actuators B Chem., Vol. 382, p. 133549, 2023.
  19. J. K. Jeong, H. W. Yang, J. H. Jeong, Y.-G. Mo, and H. D. Kim, "Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors", Appl. Phys. Lett., Vol. 93, No. 12, p. 123508, 2008.
  20. R. Bhardwaj, S. Sinha, N. Sahu, S. Majumder, P. Narang, and R. Mukhiya, "Modeling and simulation of temperature drift for ISFET-based pH sensor and its compensation through machine learning techniques", Int. J. Circuit Theory. Appl., Vol. 47, No. 6, pp. 954-970, 2019.