DOI QR코드

DOI QR Code

TiO2장식을 통한 SnO2 nanorods의 CH3COCH3 감지 특성 개선

Role of TiO2 Decoration on SnO2 Nanorods for Highly Sensitive and Selective Acetone Detection

  • 이지형 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 조운현 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 임희원 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 소재환 (한국기술교육대학교 전기전자통신공학부) ;
  • 배하경 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 정재한 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 심영석 (한국기술교육대학교 에너지신소재화학공학부)
  • Ji-Hyeong Lee (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Woon-Hyun Jo (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Heewon Lim (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Jae-Hwan So (School of Electrical, Electron and Communication Engineering, Korea University of Technology and Education) ;
  • Ha-gyeong Bae (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Jae Han Chung (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Young-Seok Shim (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
  • 투고 : 2024.09.02
  • 심사 : 2024.09.11
  • 발행 : 2024.09.30

초록

In this study, we fabricated TiO2-decorated SnO2 nanorods (TSNRs) via glancing-angle deposition to achieve highly sensitive and selective CH3COCH3 detection. The gas-sensing properties of the TSNRs were systematically investigated, and the optimal sensing performance was achieved at 350℃ by 2-nm-thick TSNRs. When the sensors were exposed to 50 ppm of various gases (CH3COCH3, C2H5OH, C5H8, CH4, and CO), the 2-nm-thick TSNRs demonstrated a 4.6-fold increase in response (Ra/Rg-1=134) to CH3COCH3 compared with bare SnO2 nanorods (Ra/Rg-1=29.5) and exhibited excellent selectivity. In a high-humid environment (relative humidity = 80%), the 2-nm-thick TSNRs indicated a low theoretical detection limit of ≈5.31 ppb for CH3COCH3. These results suggest the significant potential of the proposed sensor for use in Internet-of-Things applications, particularly under extreme environmental conditions.

키워드

과제정보

본 논문은 2024년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다(2021RIS-004). 이 논문은 한국기술교육대학교 산학협력단 공용장비센터의 지원으로 연구되었음.

참고문헌

  1. S. Madakam, R. Ramaswamy, and S. Tripathi, "Internet of Things (IoT): A literature review", J. Comput. Commun., Vol. 3, No. 5, pp. 164-173, 2015.
  2. C. M. de Morais, D. Sadok, and J. Kelner, "An IoT sensor and scenario survey for data researchers", J. Braz. Comput. Soc., Vol. 25, pp. 1-17, 2019.
  3. J. D. Fenske and S. E. Paulson, "Human breath emissions of VOCs", J. Air Waste Manag. Assoc., Vol. 49, No. 5, pp. 594-598, 1999.
  4. V. Amiri, H. Roshan, A. Mirzaei, G. Neri, and A. I. Ayesh, "Nanostructured metal oxide-based acetone gas sensors: A review", Sens., Vol. 20, No. 11, p. 3096, 2020.
  5. Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Acetone, U.S. Dept. of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, 2022.
  6. G. Korotcenkov, "Metal oxides for solid-state gas sensors: What determines our choice?", Mater. Sci. Eng. B, Vol. 139, No. 1, pp. 1-23, 2007.
  7. N. Goel, K. Kunal, A. Kushwaha, and M. Kumar, "Metal oxide semiconductors for gas sensing", Eng. Rep., Vol. 5, No. 6, p. e12604, 2023.
  8. Z. Cao, Y. Ge, W. Wang, J. Sheng, Z. Zhang, J. Li, Y. Sun, and F. Dong, "Chemical discrimination of benzene series and molecular recognition of the sensing process over Ti-doped Co3O4", ACS Sens., Vol. 7, No. 6, pp. 1757-1765, 2022.
  9. H. Ji, W. Zeng, and Y. Li, "Gas sensing mechanisms of metal oxide semiconductors: a focus review", Nanoscale, Vol. 11, No. 47, pp. 22664-22684, 2019.
  10. B. Choi, D. Shin, H. S. Lee, and H. Song, "Nanoparticle design and assembly for p-type metal oxide gas sensors", Nanoscale, Vol. 14, No. 9, pp. 3387-3397, 2022.
  11. C. M. Chang, M. H. Hon, and C. Leu, "Improvement in CO sensing characteristics by decorating ZnO nanorod arrays with Pd nanoparticles and the related mechanisms", RSC Adv., Vol. 2, No. 6, pp. 2469-2475, 2012.
  12. M. Hubner, D. Koziej, J. D. Grunwaldt, U. Weimar, and N. Barsan, "An Au clusters related spill-over sensitization mechanism in SnO2-based gas sensors identified by operando HERFD-XAS, work function changes, DC resistance and catalytic conversion studies", Phys. Chem. Chem. Phys., Vol. 14, No. 38, pp. 13249-13254, 2012.
  13. L. Y. Zhu, L. X. Ou, L. W. Mao, X. Y. Wu, Y. P. Liu, and H. L. Lu, "Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: overview", Nano Micro Lett., Vol. 15, No. 1, p. 89, 2023.
  14. P. Raju and Q. Li, "Semiconductor materials and devices for gas sensors", J. Electrochem. Soc., Vol. 169, No. 5, p. 057518, 2022.
  15. J. Huang and Q. Wan, "Gas sensors based on semiconducting metal oxide one-dimensional nanostructures", Sens., Vol. 9, No. 12, pp. 9903-9924, 2009.
  16. J. P. G. de Mussy, J. V. Macpherson, and J. L. Delplancke, "Characterisation and behaviour of Ti/TiO2/noble metal anodes", Electrochim. Acta, Vol. 48, No. 9, pp. 1131-1141, 2003.
  17. S. Yadav, S. Senapati, S. Kumar, S. K. Gahlaut, and J. P. Singh, "GLAD Based Advanced Nanostructures for Diversified Biosensing Applications: Recent Progress", Biosens., Vol. 12, No. 12, p. 1115, 2022.
  18. M. M. Hawkeye and M. J. Brett, "Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films", J. Vac. Sci. Technol. A, Vol. 25, No. 5, pp. 1317-1335, 2007.
  19. N. A. Isaac, I. Pikaar, and G. Biskos, "Metal oxide semiconducting nanomaterials for air quality gas sensors: operating principles, performance, and synthesis techniques", Microchim. Acta, Vol. 189, No. 5, p. 196, 2022.
  20. P. Shankar and J. B. B. Rayappan, "Gas sensing mechanism of metal oxides: The role of ambient atmosphere, type of semiconductor and gases-A review", Sci. Lett. J., Vol. 4, No. 4, p. 126, 2015.
  21. J. M. Jeon, Y. S. Shim, S. D. Han, Y. H. Kim, C. Y. Kang, J. S. Kim, M. Kim, and H. W. Jang, "Vertically ordered SnO2 nanobamboos for substantially improved detection of volatile reducing gases", J. Mater. Chem. A, Vol. 3, No. 35, pp. 17939-17945, 2015.
  22. B. Lyson-Sypien, A. Kusior, M. Rekas, J. Zukrowski, M. Gajewska, K. Michalow-Mauke, T. Graule, M. Radecka, and K. Zakrzewska, "Nanocrystalline TiO2/SnO2 heterostructures for gas sensing", Beilstein J. Nanotechnol., Vol. 8, No. 1, pp. 108-122, 2017.
  23. J. Khan and L. Han, "Oxygen Vacancy in TiO2: Production Methods and Properties," in Updates on Titanium Dioxide, B. Bejaoui, Eds. IntechOpen, London, pp. 1-258, 2023.