Acknowledgement
본 연구는 2024학년도 상명대학교 교내연구비를 지원받아 수행하였음(2024-A000-0294).
References
- Ministry of the Interior and Safety, 2022 Disaster Yearbook, Sejong Printing Information of the Korea Culture and Sports Education Association, Sejong, 2022.
- National Fire Agency, 2022 Fire Statistical Yearbook, Yun Planning, Daejeon, 2022.
- S. Y. Jeong, Y. K. Moon, T. H. Kim, S. W. Park, K. B. Kim, Y. C. Kang, and J. H. Lee, "A new strategy for detecting plant hormone ethylene using oxide semiconductor chemiresistors: exceptional gas selectivity and response tailored by nanoscale Cr2O3 catalytic overlayer", Adv. Sci., Vol. 7, No. 7, p. 1903093, 2020.
- S. Y. Jeong, J. S. Kim, and J. H. Lee, "Rational design of semiconductor-based chemiresistors and their libraries for next-generation artificial olfaction", Adv. Materials, Vol. 32, No. 51, p. 2002075, 2020.
- S. Li, W. Zhang, C. Wang, and G. Li, "Au nanoparticles decorated ZnIn2S4/WO3 core-shell heterostructures as highly sensitive and selective ethylene glycol gas sensors", J. Alloys Compd., Vol. 998, p. 175027, 2024.
- W. Ku, G. Lee, J.-Y. Lee, D.-H. Kim, K. H. Park, J. Lim, D. Cho, S.-C. Ha, B. G. Jung, H. Hwang, W. Lee, H. Shin, H. S. Jang, J.-O. Lee, and J.-H. Hwang, "Rational design of hybrid sensor arrays combined synergistically with machine learning for rapid response to a hazardous gas leak environment in chemical plants", J. Hazard Mater. Adv., Vol. 466, p. 133649, 2024.
- A. Gaur, A. Singh, A. Kumar, K. S. Kulkarni, S. Lala, K. Kapoor, V. Srivastava, A. Kumar, and S. C. Mukhopadhyay, "Fire sensing technologies: A review", IEEE Sens. J., Vol. 19, No. 9, pp. 3191-3202, 2019.
- G. Son and S. So, "A Study on Fire Alarm Test of IoT Multi-Fire Detector Combined Smoke/CO and Smoke/Temperature Sensors", J. Soc. Disaster Inf., Vol. 17, No. 2, pp. 236-244, 2021.
- A. Solorzano, J. Eichmann, L. Fernandez, B. Ziems, J. M. Jimenez-Soto, S. Marco, and J. Fonollosa, "Early fire detection based on gas sensor arrays: Multivariate calibration and validation", Sens. Actuators B Chem., Vol 352, p. 130961, 2022.
- J. Baek, T. J. Alhindi, Y. S. Jeong, M. K. Jeong, S. Seo, J. Kang, W. Shim, and Y. Heo, "Real-time fire detection system based on dynamic time warping of multichannel sensor networks", Fire Saf. J., Vol. 123, p. 103364, 2021.
- J. Baek, T. J. Alhindi, Y. S. Jeong, M. K. Jeong, S. Seo, J. Kang, and Y. Heo, "Intelligent multi-sensor detection system for monitoring indoor building fires", IEEE Sens. J., Vol. 21, No. 24, pp. 27982-27992, 2021.
- L. Wu, L. Chen, and X. Hao, "Multi-sensor data fusion algorithm for indoor fire early warning based on BP neural network", Inf., Vol. 12, No. 2, p. 59, 2021.
- X. Huang and L. Du, "Fire detection and recognition optimization based on virtual reality video image", IEEE Access, Vol. 8, pp. 77951-77961, 2020.
- B. Venuste, G. Geoffrey, and N. J. Pierre, "Smart Approach for Fire Detection Systems in Kigali", J. Appropriate Technol., Vol. 9, No. 3, pp. 152-161, 2023.
- L. Kou, X. Wang, X. Guo, J. Zhu, and H. Zhang, "Deep learning based inverse model for building fire source location and intensity estimation", Fire Saf. J., Vol. 121, p. 103310, 2021.
- P. Narkhede, R. Walambe, S. Mandaokar, P. Chandel, K. Kotecha, and G. Ghinea, "Gas detection and identification using multimodal artificial intelligence based sensor fusion", Appl. Syst. Innov., Vol. 4, No. 1, p. 3, 2021.
- S. Mekruksavanich and A. Jitpattanakul, "Lstm networks using smartphone data for sensor-based human activity recognition in smart homes", Sens., Vol. 21, No. 5, p. 1636, 2021.
- S. Kim and K. Lee, "LSTM-based Early Fire Detection System using Small Amount Data", J. Semicond. Display Technol., Vol. 23, No. 1, pp. 110-116, 2024.
- H. Cheng, Z. Xie, L. Wu, Z. Yu, and R. Li, "Data prediction model in wireless sensor networks based on bidirectional LSTM", EURASIP J. Wirel. Commun. Netw., Vol 2019, pp. 203(1)-203(12), 2019.
- L. Dong, D. Fang, X. Wang, W. Wei, R. Damasevicius, R. Scherer, and M. Wozniak, "Prediction of Streamflow Based on Dynamic Sliding Window LSTM", Water, Vol. 12, No. 11, p. 3032, 2020.
- D. Tomar, P. Tomar, A. Bhardwaj, and G. R. Sinha, "Deep learning neural network prediction system enhanced with best window size in sliding window algorithm for predicting domestic power consumption in a residential building", Comput. Intell. Neurosci., Vol. 2022, No. 1, p. 7216959, 2022.
- M. Jaen-Vargas, K. M. R. Leiva, F. Fernandes, S. B. Goncalves, M. T. Silva, D. S. Lopes, and J. J. S. Olmedo, "Effects of sliding window variation in the performance of acceleration-based human activity recognition using deep learning models", PeerJ. Comput. Sci., Vol. 8, p. e1052, 2022.
- S. Dong, L. Wang, L. Zeng, X. Du, C. Ji, J. Hao, X. Yang, and H. Li, "Fracture identification in reservoirs using well log data by window sliding recurrent neural network", Geoenergy Sci. Eng., Vol. 230, p. 212165, 2023.
- P. Schober, C. Boer, and L. A. Schwarte, "Correlation coefficients: appropriate use and interpretation", Anesth. Analg., Vol. 126, No. 5, pp. 1763-1768, 2018.
- J. H. Lee, T. H. Gong, and J. H. Kim, "Deriving Optimal Health Indicators Based on Fuzzy Logic using Lithium-ion Battery EIS Measurement Data and Developing SOH Estimation Based on LSTM Algorithm", Trans. Korean Inst. Power Electron., Vol. 29, No. 4, pp.308-315, 2024.