DOI QR코드

DOI QR Code

Bacillus amyloliquefaciens HY를 이용한 상추 균핵병의 생물학적 방제

Biological Control of Sclerotinia Rot Caused by Sclerotinia sclerotiorum in Lettuce Using Bacillus amyloliquefaciens HY

  • 손미라 (서울시립대학교 환경원예학과) ;
  • 김진원 (서울시립대학교 환경원예학과)
  • Mi-Ra Son (Department of Environmental Horticulture, University of Seoul) ;
  • Jin-Won Kim (Department of Environmental Horticulture, University of Seoul)
  • 투고 : 2024.04.26
  • 심사 : 2024.07.04
  • 발행 : 2024.09.30

초록

상추 균핵병균인 Sclerotinia sclerotiorum에 대한 Bacillus amyloliquefaciens HY의 길항력을 검정하기 위해 기내 실험과 온실 실험 및 생육상(growth chamber) 실험을 실시하였다. B. amyloliquefaciens HY의 상추 균핵병균에 대한 기내 대치배양 실험을 실시한 결과, 균사 생장 억제율은 70.7%를 나타냈고, 광학현미경으로 관찰한 결과 무처리구의 균사와 비교했을 때, inhibition zone 부분의 균사의 끝부분이 부풀어 오르고 검은색을 띠며 불규칙하고 기형적인 형태를 띠는 것을 확인하였다. B. amyloliquefaciens HY가 생성하는 휘발성 물질에 의한 길항력을 검정하기 위해 I-plate를 이용하여 실험한 결과, 57.7%의 균사 생장 억제율과 46.7%의 균핵 발아 억제율을 나타냈다. B. amyloliquefaciens HY는 sideropore 생산능, 인산 분해능, protease 생산능이 확인되었지만 chitinase의 생산능은 확인되지 않았다. 생육상 내에서 포트 실험을 진행한 결과, 병원균만 처리한 대조구에서는 0%의 상추 생존율을 보였고, 상추 균핵병균과 B. amyloliquefaciens HY의 배양액을 10배로 희석하여 동시에 처리한 처리구에서 80%의 상추 생존율을 나타냈다. 또한 상추균핵병균을 먼저 접종하고 1주 후에 B. amyloliquefaciens HY의 배양액을 50배로 처리한 처리구에서 80%의 상추생존율을 나타냈다.

To test the antagonistic ability of Bacillus amyloliquefaciens HY against lettuce sclerotinia rot caused by Sclerotinia sclerotiorum, an in vitro test, greenhouse test and growth chamber test were conducted. As a result of in vitro dual culture test for sclerotia of B. amyloliquefaciens HY, the mycelial growth inhibition rate was 70.7%. Mycelial tip was swollen, black, and had an irregular and deformed shape. In I-plate test, the antagonistic volatile compounds produced by B. amyloliquefaciens HY, the mycelial growth inhibition rate was 57.7% and the sclerotia germination inhibition rate was 46.7%. In addition, B. amyloliquefaciens HY had sideropore production capacity, phosphate solubillibty, and protease production capability, but B. amyloliquefaciens HY did not produce chitinase. In growth chamber test, the lettuce survival rate was 0% in the control group treated with only the pathogen, and 80% in the treatment group treated with of S. sclerotiorum and B. amyloliquefaciens HY by diluting 10 times of the lettuce survival rate. In addition, the lettuce survival rate of 80% was shown in the treatment group treated with the culture medium of B. amyloliquefaciens HY 50 times 1 week later after inoculation with S. sclerotiorum.

키워드

참고문헌

  1. Abawi, G. S. and Grogan, R. G. 1979. Epidemiology of diseases caused by Sclerotinia species. Phytopathology 69: 899-904.
  2. Abd-Alla, M. H. 1994. Phosphatases and the utilization of organic phosphorus by Rhizobium leguminosarum biovar viceae. Lett. Appl. Microbiol. 18: 294-296.
  3. Alexander, D. B. and Zuberer, D. A. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils 12: 39-45.
  4. Alnahdi, H. S. 2012. Isolation and screening of extracellular proteases produced by new isolated Bacillus sp. J. Appl. Pharm. Sci. 2: 071-074.
  5. Asari, S., Matzen, S., Petersen, M. A., Bejai, S. and Meijer, J. 2016. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens. FEMS Microbiol. Ecol. 92: fiw070.
  6. Bardin, S. D. and Huang, H. C. 2001. Research on biology and control of Sclerotinia diseases in Canada. Can. J. Plant Pathol. 23: 88-98.
  7. Cavaglieri, L., Orlando, J., Rodriguez, M. I., Chulze, S. and Etcheverry, M. 2005. Biocontrol of Bacillus subtilis against Fusarium verticillioidesin vitro and at the maize root level. Res. Microbiol. 156: 748-754.
  8. Dunne, C., Crowley, J. J., Moenne-Loccoz, Y., Dowling, D. N., Bruijn, S. and O'Gara, F. 1997. Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology 143: 3921-3931.
  9. Jangir, M., Pathak, R., Sharma, S. and Sharma, S. 2018. Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. lycopersici. Biol. Control 123: 60-70.
  10. Johnson, J. S., Spakowicz, D. J., Hong, B.-Y., Petersen, L. M., Demkowicz, P., Chen, L. et al. 2019. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 10: 5029.
  11. Jones, D. L. and Darrah, P. R. 1994. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166: 247-257.
  12. Katoh, K. and Standley, D. M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30: 772-780.
  13. Khan, M. S., Zaidi, A. and Wani, P. A. 2007. Role of phosphate solubilizing microorganisms in sustainable agriculture - a review. Agron. Sustain. Dev. 27: 29-43.
  14. Kuddus, M. and Ahmad, I. Z. 2013. Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. J. Genet. Eng. Biotechnol. 11: 39-46.
  15. Lee, H.-J., Kim, J.-Y., Lee, J.-G. and Hong, S.-S. 2014. Biological control of lettuce Sclerotinia rot by Bacillus subtilis GG95. Kor. J. Mycol. 42: 225-230. (In Korean)
  16. Lee, S. C. 2004. Control of major disease in greenhouse crops. Kor. Res. Soc. Protected Hort. 17: 2-9. (In Korean)
  17. Lee, Y. Y., Lee, Y., Kim, Y. S., Kim, H. S. and Jeon, Y. H. 2020. Control of red pepper anthracnose using Bacillus subtilis YGB36, a plant growth promoting rhizobacterium. Res. Plant Dis. 26: 8-18. (In Korean)
  18. Louden, B. C., Haarmann, D. and Lynne, A. M. 2011. Use of blue agar CAS assay for siderophore detection. J. Microbiol. Biol. Edu. 12: 51-53.
  19. Massawe, V. C., Hanif, A., Farzand, A., Mburu, D. K., Ochola, S. O., Wu, L. et al. 2018. Volatile compounds of endophytic Bacillus spp. have biocontrol activity against Sclerotinia sclerotiorum. Phytopathology 108: 1373-1385.
  20. Nam, K. U. 2001. Development of control measures and ecology against main plants disease in greenhouse. Prot. Hortic. 14: 23-29. (In Korean)
  21. Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170: 265-270.
  22. Perez-Garcia, A., Romero, D. and de Vicente, A. 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr. Opin. Biotechnol. 22: 187-193.
  23. Persello-Cartieaux, F., Nussaume, L. and Robaglia, C. 2003. Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ. 26: 189-199.
  24. Rahman, M. M. E., Hossain, D. M., Suzuki, K., Shiiya, A., Suzuki, K., Dey, T. K. et al. 2016. Suppressive effects of Bacillus spp. on mycelia, apothecia and sclerotia formation of Sclerotinia sclerotiorum and potential as biological control of white mold on mustard. Australasian Plant Pathol. 45: 103-117.
  25. Shafi, J., Tian, H. and Ji, M. 2017. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol. Biotechnol. Equip. 31: 446-459.
  26. Sharma, N. and Sharma, S. 2008. Control of foliar diseases of mustard by Bacillus from reclaimed soil. Microbiol. Res. 163: 408-413.
  27. Statistics Korea. 2020. Index of agriculture and forestry production. Statistics Korea, Daejeon, Korea. (In Korean)
  28. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857.
  29. Subbarao, K. V. 1998. Progress toward integrated management of lettuce drop. Plant Dis. 82: 1068-1078.
  30. Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52: 487-511.
  31. Wu, Y., Zhou, J., Li, C. and Ma, Y. 2019. Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens. MicrobiologyOpen 8: e00813.