References
- Abawi, G. S. and Grogan, R. G. 1979. Epidemiology of diseases caused by Sclerotinia species. Phytopathology 69: 899-904.
- Abd-Alla, M. H. 1994. Phosphatases and the utilization of organic phosphorus by Rhizobium leguminosarum biovar viceae. Lett. Appl. Microbiol. 18: 294-296.
- Alexander, D. B. and Zuberer, D. A. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils 12: 39-45.
- Alnahdi, H. S. 2012. Isolation and screening of extracellular proteases produced by new isolated Bacillus sp. J. Appl. Pharm. Sci. 2: 071-074.
- Asari, S., Matzen, S., Petersen, M. A., Bejai, S. and Meijer, J. 2016. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens. FEMS Microbiol. Ecol. 92: fiw070.
- Bardin, S. D. and Huang, H. C. 2001. Research on biology and control of Sclerotinia diseases in Canada. Can. J. Plant Pathol. 23: 88-98.
- Cavaglieri, L., Orlando, J., Rodriguez, M. I., Chulze, S. and Etcheverry, M. 2005. Biocontrol of Bacillus subtilis against Fusarium verticillioidesin vitro and at the maize root level. Res. Microbiol. 156: 748-754.
- Dunne, C., Crowley, J. J., Moenne-Loccoz, Y., Dowling, D. N., Bruijn, S. and O'Gara, F. 1997. Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology 143: 3921-3931.
- Jangir, M., Pathak, R., Sharma, S. and Sharma, S. 2018. Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. lycopersici. Biol. Control 123: 60-70.
- Johnson, J. S., Spakowicz, D. J., Hong, B.-Y., Petersen, L. M., Demkowicz, P., Chen, L. et al. 2019. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 10: 5029.
- Jones, D. L. and Darrah, P. R. 1994. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166: 247-257.
- Katoh, K. and Standley, D. M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30: 772-780.
- Khan, M. S., Zaidi, A. and Wani, P. A. 2007. Role of phosphate solubilizing microorganisms in sustainable agriculture - a review. Agron. Sustain. Dev. 27: 29-43.
- Kuddus, M. and Ahmad, I. Z. 2013. Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. J. Genet. Eng. Biotechnol. 11: 39-46.
- Lee, H.-J., Kim, J.-Y., Lee, J.-G. and Hong, S.-S. 2014. Biological control of lettuce Sclerotinia rot by Bacillus subtilis GG95. Kor. J. Mycol. 42: 225-230. (In Korean)
- Lee, S. C. 2004. Control of major disease in greenhouse crops. Kor. Res. Soc. Protected Hort. 17: 2-9. (In Korean)
- Lee, Y. Y., Lee, Y., Kim, Y. S., Kim, H. S. and Jeon, Y. H. 2020. Control of red pepper anthracnose using Bacillus subtilis YGB36, a plant growth promoting rhizobacterium. Res. Plant Dis. 26: 8-18. (In Korean)
- Louden, B. C., Haarmann, D. and Lynne, A. M. 2011. Use of blue agar CAS assay for siderophore detection. J. Microbiol. Biol. Edu. 12: 51-53.
- Massawe, V. C., Hanif, A., Farzand, A., Mburu, D. K., Ochola, S. O., Wu, L. et al. 2018. Volatile compounds of endophytic Bacillus spp. have biocontrol activity against Sclerotinia sclerotiorum. Phytopathology 108: 1373-1385.
- Nam, K. U. 2001. Development of control measures and ecology against main plants disease in greenhouse. Prot. Hortic. 14: 23-29. (In Korean)
- Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170: 265-270.
- Perez-Garcia, A., Romero, D. and de Vicente, A. 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr. Opin. Biotechnol. 22: 187-193.
- Persello-Cartieaux, F., Nussaume, L. and Robaglia, C. 2003. Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ. 26: 189-199.
- Rahman, M. M. E., Hossain, D. M., Suzuki, K., Shiiya, A., Suzuki, K., Dey, T. K. et al. 2016. Suppressive effects of Bacillus spp. on mycelia, apothecia and sclerotia formation of Sclerotinia sclerotiorum and potential as biological control of white mold on mustard. Australasian Plant Pathol. 45: 103-117.
- Shafi, J., Tian, H. and Ji, M. 2017. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol. Biotechnol. Equip. 31: 446-459.
- Sharma, N. and Sharma, S. 2008. Control of foliar diseases of mustard by Bacillus from reclaimed soil. Microbiol. Res. 163: 408-413.
- Statistics Korea. 2020. Index of agriculture and forestry production. Statistics Korea, Daejeon, Korea. (In Korean)
- Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857.
- Subbarao, K. V. 1998. Progress toward integrated management of lettuce drop. Plant Dis. 82: 1068-1078.
- Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52: 487-511.
- Wu, Y., Zhou, J., Li, C. and Ma, Y. 2019. Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens. MicrobiologyOpen 8: e00813.