Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C3005817 to B.C.C; 2022R1A2B5B02001403 to S.M.L). Also, this research was funded by the Bio & Medical Technology Development Program of the National Research Foundation funded by the Ministry of Science and ICT (2021R1I1A1A0105744 to J.B.L.)
References
- Choo SY. The HLA system: genetics, immunology, clinical testing, and clinical implications. Yonsei Med J. 2007;48:11-23. https://doi.org/10.3349/ymj.2007.48.1.11
- Shankarkumar U. The human leukocyte antigen (HLA) system. Int J Hum Genet. 2004;4:91-103. https://doi.org/10.1080/09723757.2004.11885875
- Madden K, Chabot-Richards D. HLA testing in the molecular diagnostic laboratory. Virchows Arch. 2019;474:139-147. https://doi.org/10.1007/s00428-018-2501-3
- Sheldon S, Poulton K. HLA typing and its influence on organ transplantation. Methods Mol Biol. 2006;333:157-174. https://doi.org/10.1385/1-59745-049-9:157
- Mahdi BM. A glow of HLA typing in organ transplantation. Clin Transl Med. 2013;2:e6. https://doi.org/10.1186/2001-1326-2-6
- Deshpande P, Hertzman RJ, Palubinsky AM, Giles JB, Karnes JH, Gibson A, et al. Immunopharmacogenomics: mechanisms of HLA-associated drug reactions. Clin Pharmacol Ther. 2021;110:607-615. https://doi.org/10.1002/cpt.2343
- Illing PT, Purcell AW, McCluskey J. The role of HLA genes in pharmacogenomics: unravelling HLA associated adverse drug reactions. Immunogenetics. 2017;69:617-630. https://doi.org/10.1007/s00251-017-1007-5
- Manson LEN, Swen JJ, Guchelaar HJ. Diagnostic test criteria for HLA genotyping to prevent drug hypersensitivity reactions: a systematic review of actionable HLA recommendations in CPIC and DPWG guidelines. Front Pharmacol. 2020;11:567048. https://doi.org/10.3389/fphar.2020.567048
- Crux NB, Elahi S. Human leukocyte antigen (HLA) and immune regulation: how do classical and non-classical HLA alleles modulate immune response to human immunodeficiency virus and hepatitis C virus infections? Front Immunol. 2017;8:832. https://doi.org/10.3389/fimmu.2017.00832
- Kazaoka A, Fujimori S, Yamada Y, Shirayanagi T, Gao Y, Kuwahara S, et al. HLA-B*57:01-dependent intracellular stress in keratinocytes triggers dermal hypersensitivity reactions to abacavir. PNAS Nexus. 2024;3:pgae140. https://doi.org/10.1093/pnasnexus/pgae140
- Kloypan C, Koomdee N, Satapornpong P, Tempark T, Biswas M, Sukasem C. A comprehensive review of HLA and severe cutaneous adverse drug reactions: implication for clinical pharmacogenomics and precision medicine. Pharmaceuticals (Basel). 2021;14:1077. https://doi.org/10.3390/ph14111077
- Digitale JC, Callaway PC, Martin M, Nelson G, Viard M, Rek J, et al. HLA alleles B*53:01 and C*06:02 are associated with higher risk of P. falciparum parasitemia in a cohort in Uganda. Front Immunol. 2021;12:650028. https://doi.org/10.3389/fimmu.2021.650028
- Drenovska K, Ivanova M, Vassileva S, Shahid MA, Naumova E. Association of specific HLA alleles and haplotypes with pemphigus vulgaris in the Bulgarian population. Front Immunol. 2022;13:901386. https://doi.org/10.3389/fimmu.2022.901386
- Oguz FS, Oguz SR, Ogret Y, Karadeniz TS, Ciftci HS, Karatas S, et al. Distribution of HLA epitope frequencies in Turkish population. Turk J Biochem. 2022;47:289-295. https://doi.org/10.1515/tjb-2021-0083
- Gourraud PA, Khankhanian P, Cereb N, Yang SY, Feolo M, Maiers M, et al. HLA diversity in the 1000 genomes dataset. PLoS One. 2014;9:e97282. https://doi.org/10.1371/journal.pone.0097282
- Sanchez-Mazas A. An apportionment of human HLA diversity. Tissue Antigens. 2007;69 Suppl 1:198-202. https://doi.org/10.1111/j.1399-0039.2006.00802.x
- Brynedal B, Duvefelt K, Jonasdottir G, Roos IM, Akesson E, Palmgren J, et al. HLA-A confers an HLA-DRB1 independent influence on the risk of multiple sclerosis. PLoS One. 2007;2:e664. https://doi.org/10.1371/journal.pone.0000664
- Lee HS. Association of human leukocyte antigen-DRB1 with juvenile idiopathic arthritis. J Rheum Dis. 2014;21:225-227. https://doi.org/10.4078/jrd.2014.21.5.225
- Kayhan B, Kurtoglu EL, Taskapan H, Piskin T, Sahin I, Otlu G, et al. HLA-A, -B, -DRB1 allele and haplotype frequencies and comparison with blood group antigens in dialysis patients in the East Anatolia region of Turkey. Transplant Proc. 2013;45:2123-2128. https://doi.org/10.1016/j.transproceed.2013.03.034
- Hernandez-Mejia DG, Paez-Gutierrez IA, Dorsant Ardon V, Camacho Ramirez N, Mosquera M, Cendales PA, et al. Distributions of the HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 alleles and haplotype frequencies of 1763 stem cell donors in the Colombian Bone Marrow Registry typed by next-generation sequencing. Front Immunol. 2023;13:1057657. https://doi.org/10.3389/fimmu.2022.1057657
- Park H, Lee YJ, Song EY, Park MH. HLA-A, HLA-B and HLA-DRB1 allele and haplotype frequencies of 10,918 Koreans from bone marrow donor registry in Korea. Int J Immunogenet. 2016;43:287-296. https://doi.org/10.1111/iji.12288
- Liu B, Shao Y, Fu R. Current research status of HLA in immune-related diseases. Immun Inflamm Dis. 2021;9:340-350. https://doi.org/10.1002/iid3.416
- Ahn S, Choi HB, Kim TG. HLA and disease associations in Koreans. Immune Netw. 2011;11:324-335. https://doi.org/10.4110/in.2011.11.6.324
- Joseph A, Thirupathamma M, Mathews E, Alagu M. Genetics of type 2 diabetes mellitus in Indian and Global Population: A Review. Egypt J Med Hum Genet. 2022;23:135. https://doi.org/10.1186/s43042-022-00346-1
- Wang W, Zhang W, Zhang J, He J, Zhu F. Distribution of HLA allele frequencies in 82 Chinese individuals with coronavirus disease-2019 (COVID-19). HLA. 2020;96:194-196. https://doi.org/10.1111/tan.13941
- Park HJ, Kim YJ, Kim DH, Kim J, Park KH, Park JW, et al. HLA allele frequencies in 5802 Koreans: varied allele types associated with SJS/TEN according to culprit drugs. Yonsei Med J. 2016;57:118-126. https://doi.org/10.3349/ymj.2016.57.1.118
- Choe W, Chae JD, Yang JJ, Hwang SH, Choi SE, Oh HB. Identification of 8-digit HLA-A, -B, -C, and -DRB1 allele and haplotype frequencies in Koreans using the One Lambda AllType next-generation sequencing kit. Ann Lab Med. 2021;41:310-317. https://doi.org/10.3343/alm.2021.41.3.310
- Que TN, Khanh NB, Khanh BQ, Van Son C, Van Anh NT, Anh TTT, et al. Allele and haplotype frequencies of HLA-A, -B, -C, and -DRB1 genes in 3,750 cord blood units from a Kinh Vietnamese population. Front Immunol. 2022;13:875283. https://doi.org/10.3389/fimmu.2022.875283
- Alfraih F, Alawwami M, Aljurf M, Alhumaidan H, Alsaedi H, El Fakih R, et al. High-resolution HLA allele and haplotype frequencies of the Saudi Arabian population based on 45,457 individuals and corresponding stem cell donor matching probabilities. Hum Immunol. 2021;82:97-102. https://doi.org/10.1016/j.humimm.2020.12.006
- Chen KY, Liu J, Ren EC. Structural and functional distinctiveness of HLA-A2 allelic variants. Immunol Res. 2012;53:182-190. https://doi.org/10.1007/s12026-012-8295-5
- Shafer P, Kelly LM, Hoyos V. Cancer therapy with TCR-engineered T cells: current strategies, challenges, and prospects. Front Immunol. 2022;13:835762. https://doi.org/10.3389/fimmu.2022.835762
- Abate-Daga D, Speiser DE, Chinnasamy N, Zheng Z, Xu H, Feldman SA, et al. Development of a T cell receptor targeting an HLA-A*0201HLA-A*0201 restricted epitope from the cancer-testis antigen SSX2 for adoptive immunotherapy of cancer. PLoS One. 2014;9:e93321. https://doi.org/10.1371/journal.pone.0093321
- Olivier T, Haslam A, Tuia J, Prasad V. Eligibility for human leukocyte antigen-based therapeutics by race and ethnicity. JAMA Netw Open. 2023;6:e2338612. https://doi.org/10.1001/jamanetworkopen.2023.38612