DOI QR코드

DOI QR Code

A Comprehensive Analysis of HLA-A and HLA-DR Allele Frequencies and Haplotype Associations in a Korean Population of 790 Individuals

한국인 790명을 대상으로 한 HLA-A 및 HLA-DR 대립유전자 빈도 및 일배체형 연관성에 대한 종합적 분석

  • Hee-Kyung HAN (Department of Medical Sciences, Yonsei University College of Medicine) ;
  • Mi Hyun KIM (Department of Medical Sciences, Yonsei University College of Medicine) ;
  • Seong Su JEONG (Department of Medical Sciences, Yonsei University College of Medicine) ;
  • Dong Kwon KIM (Department of Medical Sciences, Yonsei University College of Medicine) ;
  • Youngtaek KIM (Department of Medical Sciences, Yonsei University College of Medicine) ;
  • Joon Yeon HWANG (Department of Medical Sciences, Yonsei University College of Medicine) ;
  • Seong-san KANG (Department of Medical Sciences, Yonsei University College of Medicine) ;
  • Seung Min YANG (Department of Medical Sciences, Yonsei University College of Medicine) ;
  • Seul LEE (Department of Medical Sciences, Yonsei University College of Medicine) ;
  • Sujeong BAEK (Department of Medical Sciences, Yonsei University College of Medicine) ;
  • Kwangmin NA (Department of Medical Sciences, Yonsei University College of Medicine) ;
  • Chai Young LEE (Department of Medical Sciences, Yonsei University College of Medicine) ;
  • Yu Jin HAN (Department of Medical Sciences, Yonsei University College of Medicine) ;
  • So Young PARK (Department of Medical Sciences, Yonsei University College of Medicine) ;
  • Min Hee HONG (Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine) ;
  • Jii Bum LEE (Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine) ;
  • Sun Min LIM (Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine) ;
  • Jae-Hwan KIM (Department of Medical Sciences, Yonsei University College of Medicine) ;
  • Kyoung-Ho PYO (Department of Medical Sciences, Yonsei University College of Medicine) ;
  • Byoung Chul CHO (Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine)
  • 한희경 (연세대학교 의과대학 연세의생명연구원) ;
  • 김미현 (연세대학교 의과대학 연세의생명연구원) ;
  • 정성수 (연세대학교 의과대학 연세의생명연구원) ;
  • 김동권 (연세대학교 의과대학 연세의생명연구원) ;
  • 김영택 (연세대학교 의과대학 연세의생명연구원) ;
  • 황준연 (연세대학교 의과대학 연세의생명연구원) ;
  • 강성산 (연세대학교 의과대학 연세의생명연구원) ;
  • 양승민 (연세대학교 의과대학 연세의생명연구원) ;
  • 이슬 (연세대학교 의과대학 연세의생명연구원) ;
  • 백수정 (연세대학교 의과대학 연세의생명연구원) ;
  • 나광민 (연세대학교 의과대학 연세의생명연구원) ;
  • 이채영 (연세대학교 의과대학 연세의생명연구원) ;
  • 한유진 (연세대학교 의과대학 연세의생명연구원) ;
  • 박소영 (연세대학교 의과대학 연세의생명연구원) ;
  • 홍민희 (연세대학교 의과대학 세브란스병원 연세암센터 내과학교실 종양내과) ;
  • 이기쁨 (연세대학교 의과대학 세브란스병원 연세암센터 내과학교실 종양내과) ;
  • 임선민 (연세대학교 의과대학 세브란스병원 연세암센터 내과학교실 종양내과) ;
  • 김재환 (연세대학교 의과대학 연세의생명연구원) ;
  • 표경호 (연세대학교 의과대학 연세의생명연구원) ;
  • 조병철 (연세대학교 의과대학 세브란스병원 연세암센터 내과학교실 종양내과)
  • Received : 2024.07.30
  • Accepted : 2024.08.28
  • Published : 2024.09.30

Abstract

The human leukocyte antigen (HLA) system, which is part of the major histocompatibility complex (MHC) plays a vital role in immune responses by differentiating between itself and foreign cells and antigens. The significant diversity of alleles affects disease susceptibility and immune responses within different populations. Specifically, the HLA-A and HLA-DRB1 alleles are associated with various immune-related diseases, and understanding the frequency and haplotype associations of these alleles is vital for genetic and immunological research. To investigate the distribution of these characteristics in Koreans, we isolated peripheral blood mononuclear cells (PBMCs) from blood samples donated by volunteers at the Seoul Central Blood Bank and performed HLA typing on 790 samples. Our study found that the HLA-A and HLA-DRB1 alleles are widely distributed within the Korean population, with HLA-A*24:02 (21.7%) and HLA-DRB1*09:01 (9.9%) being the most frequent. Significant haplotype associations between specific HLA-A and HLA-DRB1 alleles were identified using the Chi-square test, suggesting that certain genetic combinations may influence disease onset. This insight could contribute to the development of predictive and preventative strategies for various diseases. The unique genetic characteristics of the Korean population highlight the importance of studying the HLA allele and the haplotype distributions in this group as key indicators for understanding disease susceptibility.

Human leukocyte antigen (HLA) 시스템은 주조직 적합성 복합체(major histocompatibility complex, MHC)의 일부분으로, 자가 세포와 비자가 세포 및 항원을 구분하여 면역 반응에서 중요한 역할을 한다. HLA allele의 다양한 변이는 질병감수성과 면역 반응에 영향을 미치며, 이는 각기 다른 인구 집단에서 차이가 난다. 특히, HLA-A와 HLA-DRB1 allele은 다양한 면역 관련 질환과 연관되어 있어, 이러한 유전자의 빈도와 haplotype의 연관성을 이해하는 것이 유전학적 및 면역학적 연구에서 매우 중요하다. 한국인에서 이러한 특성의 분포를 조사하기 위해, 서울중앙혈액원에 헌혈한 자원자들의 혈액에서 peripheral blood mononuclear cell을 분리하고, 790명의 샘플에 대해 HLA 유전자형 분석을 수행하였다. 연구 결과, HLA-A와 HLA-DRB1 allele은 한국인 집단에서 널리 분포하고 있으며, HLA-A*24:02 (21.7%)와 HLA-DRB1*09:01 (9.9%)이 가장 빈번하게 나타났다. 특정 HLA-A와 HLA-DRB1 allele 간의 중요한 haplotype 연관성이 카이제곱 검정을 통해 확인되었으며, 이는 특정 유전자 조합이 질병 발병에 영향을 미칠 수 있음을 시사한다. 이러한 통찰은 질병에 대한 예측 및 예방전략 개발에 기여할 수 있다. 한국인 집단의 독특한 유전적 특성은 이 그룹에서 HLA allele과 haplotype 분포를 연구하는 것이 질병 감수성을 이해하는 중요한 지표임을 강조한다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C3005817 to B.C.C; 2022R1A2B5B02001403 to S.M.L). Also, this research was funded by the Bio & Medical Technology Development Program of the National Research Foundation funded by the Ministry of Science and ICT (2021R1I1A1A0105744 to J.B.L.)

References

  1. Choo SY. The HLA system: genetics, immunology, clinical testing, and clinical implications. Yonsei Med J. 2007;48:11-23. https://doi.org/10.3349/ymj.2007.48.1.11
  2. Shankarkumar U. The human leukocyte antigen (HLA) system. Int J Hum Genet. 2004;4:91-103. https://doi.org/10.1080/09723757.2004.11885875
  3. Madden K, Chabot-Richards D. HLA testing in the molecular diagnostic laboratory. Virchows Arch. 2019;474:139-147. https://doi.org/10.1007/s00428-018-2501-3
  4. Sheldon S, Poulton K. HLA typing and its influence on organ transplantation. Methods Mol Biol. 2006;333:157-174. https://doi.org/10.1385/1-59745-049-9:157
  5. Mahdi BM. A glow of HLA typing in organ transplantation. Clin Transl Med. 2013;2:e6. https://doi.org/10.1186/2001-1326-2-6
  6. Deshpande P, Hertzman RJ, Palubinsky AM, Giles JB, Karnes JH, Gibson A, et al. Immunopharmacogenomics: mechanisms of HLA-associated drug reactions. Clin Pharmacol Ther. 2021;110:607-615. https://doi.org/10.1002/cpt.2343
  7. Illing PT, Purcell AW, McCluskey J. The role of HLA genes in pharmacogenomics: unravelling HLA associated adverse drug reactions. Immunogenetics. 2017;69:617-630. https://doi.org/10.1007/s00251-017-1007-5
  8. Manson LEN, Swen JJ, Guchelaar HJ. Diagnostic test criteria for HLA genotyping to prevent drug hypersensitivity reactions: a systematic review of actionable HLA recommendations in CPIC and DPWG guidelines. Front Pharmacol. 2020;11:567048. https://doi.org/10.3389/fphar.2020.567048
  9. Crux NB, Elahi S. Human leukocyte antigen (HLA) and immune regulation: how do classical and non-classical HLA alleles modulate immune response to human immunodeficiency virus and hepatitis C virus infections? Front Immunol. 2017;8:832. https://doi.org/10.3389/fimmu.2017.00832
  10. Kazaoka A, Fujimori S, Yamada Y, Shirayanagi T, Gao Y, Kuwahara S, et al. HLA-B*57:01-dependent intracellular stress in keratinocytes triggers dermal hypersensitivity reactions to abacavir. PNAS Nexus. 2024;3:pgae140. https://doi.org/10.1093/pnasnexus/pgae140
  11. Kloypan C, Koomdee N, Satapornpong P, Tempark T, Biswas M, Sukasem C. A comprehensive review of HLA and severe cutaneous adverse drug reactions: implication for clinical pharmacogenomics and precision medicine. Pharmaceuticals (Basel). 2021;14:1077. https://doi.org/10.3390/ph14111077
  12. Digitale JC, Callaway PC, Martin M, Nelson G, Viard M, Rek J, et al. HLA alleles B*53:01 and C*06:02 are associated with higher risk of P. falciparum parasitemia in a cohort in Uganda. Front Immunol. 2021;12:650028. https://doi.org/10.3389/fimmu.2021.650028
  13. Drenovska K, Ivanova M, Vassileva S, Shahid MA, Naumova E. Association of specific HLA alleles and haplotypes with pemphigus vulgaris in the Bulgarian population. Front Immunol. 2022;13:901386. https://doi.org/10.3389/fimmu.2022.901386
  14. Oguz FS, Oguz SR, Ogret Y, Karadeniz TS, Ciftci HS, Karatas S, et al. Distribution of HLA epitope frequencies in Turkish population. Turk J Biochem. 2022;47:289-295. https://doi.org/10.1515/tjb-2021-0083
  15. Gourraud PA, Khankhanian P, Cereb N, Yang SY, Feolo M, Maiers M, et al. HLA diversity in the 1000 genomes dataset. PLoS One. 2014;9:e97282. https://doi.org/10.1371/journal.pone.0097282
  16. Sanchez-Mazas A. An apportionment of human HLA diversity. Tissue Antigens. 2007;69 Suppl 1:198-202. https://doi.org/10.1111/j.1399-0039.2006.00802.x
  17. Brynedal B, Duvefelt K, Jonasdottir G, Roos IM, Akesson E, Palmgren J, et al. HLA-A confers an HLA-DRB1 independent influence on the risk of multiple sclerosis. PLoS One. 2007;2:e664. https://doi.org/10.1371/journal.pone.0000664
  18. Lee HS. Association of human leukocyte antigen-DRB1 with juvenile idiopathic arthritis. J Rheum Dis. 2014;21:225-227. https://doi.org/10.4078/jrd.2014.21.5.225
  19. Kayhan B, Kurtoglu EL, Taskapan H, Piskin T, Sahin I, Otlu G, et al. HLA-A, -B, -DRB1 allele and haplotype frequencies and comparison with blood group antigens in dialysis patients in the East Anatolia region of Turkey. Transplant Proc. 2013;45:2123-2128. https://doi.org/10.1016/j.transproceed.2013.03.034
  20. Hernandez-Mejia DG, Paez-Gutierrez IA, Dorsant Ardon V, Camacho Ramirez N, Mosquera M, Cendales PA, et al. Distributions of the HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 alleles and haplotype frequencies of 1763 stem cell donors in the Colombian Bone Marrow Registry typed by next-generation sequencing. Front Immunol. 2023;13:1057657. https://doi.org/10.3389/fimmu.2022.1057657
  21. Park H, Lee YJ, Song EY, Park MH. HLA-A, HLA-B and HLA-DRB1 allele and haplotype frequencies of 10,918 Koreans from bone marrow donor registry in Korea. Int J Immunogenet. 2016;43:287-296. https://doi.org/10.1111/iji.12288
  22. Liu B, Shao Y, Fu R. Current research status of HLA in immune-related diseases. Immun Inflamm Dis. 2021;9:340-350. https://doi.org/10.1002/iid3.416
  23. Ahn S, Choi HB, Kim TG. HLA and disease associations in Koreans. Immune Netw. 2011;11:324-335. https://doi.org/10.4110/in.2011.11.6.324
  24. Joseph A, Thirupathamma M, Mathews E, Alagu M. Genetics of type 2 diabetes mellitus in Indian and Global Population: A Review. Egypt J Med Hum Genet. 2022;23:135. https://doi.org/10.1186/s43042-022-00346-1
  25. Wang W, Zhang W, Zhang J, He J, Zhu F. Distribution of HLA allele frequencies in 82 Chinese individuals with coronavirus disease-2019 (COVID-19). HLA. 2020;96:194-196. https://doi.org/10.1111/tan.13941
  26. Park HJ, Kim YJ, Kim DH, Kim J, Park KH, Park JW, et al. HLA allele frequencies in 5802 Koreans: varied allele types associated with SJS/TEN according to culprit drugs. Yonsei Med J. 2016;57:118-126. https://doi.org/10.3349/ymj.2016.57.1.118
  27. Choe W, Chae JD, Yang JJ, Hwang SH, Choi SE, Oh HB. Identification of 8-digit HLA-A, -B, -C, and -DRB1 allele and haplotype frequencies in Koreans using the One Lambda AllType next-generation sequencing kit. Ann Lab Med. 2021;41:310-317. https://doi.org/10.3343/alm.2021.41.3.310
  28. Que TN, Khanh NB, Khanh BQ, Van Son C, Van Anh NT, Anh TTT, et al. Allele and haplotype frequencies of HLA-A, -B, -C, and -DRB1 genes in 3,750 cord blood units from a Kinh Vietnamese population. Front Immunol. 2022;13:875283. https://doi.org/10.3389/fimmu.2022.875283
  29. Alfraih F, Alawwami M, Aljurf M, Alhumaidan H, Alsaedi H, El Fakih R, et al. High-resolution HLA allele and haplotype frequencies of the Saudi Arabian population based on 45,457 individuals and corresponding stem cell donor matching probabilities. Hum Immunol. 2021;82:97-102. https://doi.org/10.1016/j.humimm.2020.12.006
  30. Chen KY, Liu J, Ren EC. Structural and functional distinctiveness of HLA-A2 allelic variants. Immunol Res. 2012;53:182-190. https://doi.org/10.1007/s12026-012-8295-5
  31. Shafer P, Kelly LM, Hoyos V. Cancer therapy with TCR-engineered T cells: current strategies, challenges, and prospects. Front Immunol. 2022;13:835762. https://doi.org/10.3389/fimmu.2022.835762
  32. Abate-Daga D, Speiser DE, Chinnasamy N, Zheng Z, Xu H, Feldman SA, et al. Development of a T cell receptor targeting an HLA-A*0201HLA-A*0201 restricted epitope from the cancer-testis antigen SSX2 for adoptive immunotherapy of cancer. PLoS One. 2014;9:e93321. https://doi.org/10.1371/journal.pone.0093321
  33. Olivier T, Haslam A, Tuia J, Prasad V. Eligibility for human leukocyte antigen-based therapeutics by race and ethnicity. JAMA Netw Open. 2023;6:e2338612. https://doi.org/10.1001/jamanetworkopen.2023.38612