Genome Reports

Complete Genome Sequence of *Priestia megaterium* Strain 10 Isolated from Soybean Rhizosphere (*Glycine max*)

Amani Sliti¹ and Jae-Ho Shin^{1,2,3*}

¹Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
²NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
³Department of Integrative Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea

Received: August 2, 2024 / Revised: September 2, 2024 / Accepted: September 6, 2024

We present the complete genome sequence analysis of Priestia megaterium strain 10, isolated from the soybean rhizosphere. The genome consists of a single circular chromosome of 4,815,034 bp with a G+C content of 38.2% and 4 plasmids named P1 (198,305 bp), P2 (139,815 bp), P3 (79,328 bp), and P4 (61,901 bp).

Keywords: Complete genome, Priestia megaterium, rhizosphere, soybean

Plants are a major living organism form, essential for ecosystem sustainability. Due to their beneficial roles, plants provide nutrient sources, regulate the hydroclimate, improve soil structure and function, and clean the biosphere of contaminants (gas emissions, biochemical fertilizers, etc.) [1, 2]. However, various environmental stress conditions, including abiotic (drought, salinity, floods, cold/heat) and biotic factors (pathogen infection), can have detrimental impacts on plant growth and agricultural productivity. To mitigate the impact of harsh environmental conditions and enhance crop yield, the application of plant growth-promoting bacteria (PGPB) has shown promising results [3].

P. megaterium, previously known as *Bacillus megaterium* is a Gram-positive, rod-shaped bacterium belonging to the *Bacillota*. Several studies have demonstrated its plant growth-promoting ability in normal and stress conditions. Through nutrient uptake, phytohormone synthesis, and enhancement of plant defense mecha-

*Corresponding author Phone: +82-53-950-5716, Fax: +82-53-953-7233 E-mail: jhshin@knu.ac.kr nisms, P. megaterium has been recognized as a PGPB [4].

Microbiology and Biotechnology Lette

In the present study, *P. megaterium* strain 10 was isolated from the rhizosphere of soybean soil collected from Daegu, South Korea ($35^{\circ}52'43.1"N 128^{\circ}47'37.3"E$). Briefly, 1 g of soil was serially diluted, then dilutions from 10^{-1} to 10^{-5} were spread on tryptic soy agar (TSA) and incubated at $30^{\circ}C$ for 24 to 48 h. Additionally, and for purification purposes, a bacterial colony was selected and sub-cultured twice on TSA agar and subsequently incubated for 24 to 48 h.

The genomic DNA extraction was performed from an overnight cultured bacterial cell at 30°C in tryptic soy broth (TSB) using the Wizard[®] Genomic DNA Purification Kit (Promega, USA) following the manufacturer's instructions. The concentration and quality of DNA were assessed using the Qubit fluorometer 2.0 (Thermo Fisher Scientific, USA) and the NanoDrop UV-Vis spectrophotometer (Thermo Fisher Scientific), respectively. The sequencing library was prepared without DNA size selection and was generated using the Oxford Nanopore technology (ONT). The V14 kit chemistry (SQK-LSK114, Oxford Nanopore Technologies, United Kingdom) and the ligation kit NEBNext[®] Companion Module (New England Biolabs, USA) were utilized for library preparation based on the manufacturer's protocol. The genomic DNA was sequenced on an R10.4.1 flow cell using the MinION device of the ONT. In addition, Guppy v4.4.1 software was used to produce FASTQ files of the sequenced DNA [5]. Low-quality reads (5% worst fastq reads) were removed using Filtlong v0.2.1 with default settings. The genomic DNA sequencing was performed at the KNU NGS Core Facility (Republic of Korea).

The sequencing data showed the generation of 144,000 reads equivalent to 862,137,845 bp with an approximate coverage of 164 x and a relative N₅₀ of 11,632 bp. Flye 2.9.1-b1780 was used for *de novo* genome assembly using the default parameters except for genome size which was set to 5 m (--genome-size 5m) [6]. Assembly results showed the presence of 5 circular contigs, with the biggest corresponding to *P. megaterium* chromosome of 4,815,034 bp with a G+C content of 38.2%. The rest of the four contigs correspond to plasmids P1, P2, P3, and P4 with sizes of 198,305 bp, 139,815 bp, 79,328 bp, and 61,901 bp, and G+C contents of 39.8%, 34.2%, 35.1% respectively. The bacterial genome was annotated using

the Prokaryotic Genome Annotation Pipeline (PGAP), and the Rapid Annotation using Subsystem Technology (RAST server) version 2.0 [7, 8].

The annotation indicated that the chromosome of *P. megaterium* 10 encodes 5317 coding genes, 38 ribosomal RNAs, 130 transfer RNAs, 8 non-coding RNAs, and 45 pseudogenes (Table 1). Bacterial chromosome and plasmids were visualized using Proskee tool [9] (Fig. 1).

The average nucleotide identity (ANI) was performed between the genome of *P. megaterium* strain 10 and the NCBI deposited sequence of *P. megaterium* strain WSH-

Table 1. Genomic features of P. megaterium 10.

Feature	Number
Number of contigs	5
Chromosome size (bp)	4,815,034
Coding genes (CDSs)	5317
Ribosomal RNAs (rRNAs)	38
Transfer RNAs (tRNAs)	130
Non-coding RNAs (ncRNAs)	8
Pseudogenes	45

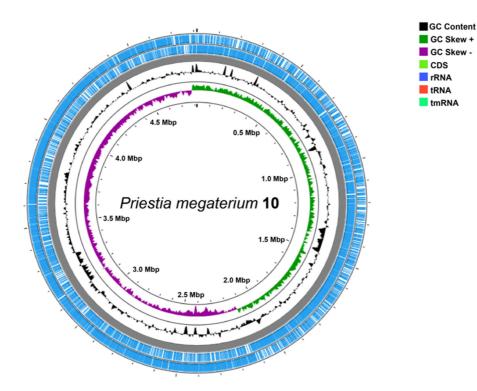


Fig. 1. Circular genome map of *P. megaterium* 10. The outer blue circles present the annotation, location, and direction of predicted genes, the middle black circles show the GC% content and the inner circle indicates the GC skew, positive (green) and negative (purple).

	Gene	Product	Chromosome location
PGP related genes	NorD	Nitric oxide reductase activation	1842547-1844463
	NorQ	Nitric oxide reductase activation	1841645-1842535
	Amt	Ammonium transporter	2288510-2287227
	GltD	Glutamate synthase small subunit	1772515-1773996
	PhoH	Phosphate starvation-inducible protein	1103104-1104432
	PhoP	Alkaline phosphatase synthesis transcriptional regulatory protein	4271064-4270348
	PhoU	Phosphate transport system regulatory protein	4024271-4023612
	PhoR	Phosphate regulon sensor protein PhoR	4270355-4268583
	CysA	Sulfate and thiosulfate import ATP-binding protein CysA	1798136-1799202
	CysC	Adenylyl-sulfate kinase	4420749-4421348
	KdpA	Potassium-transporting ATPase A chain	2715008-2713341
	КdpВ	Potassium-transporting ATPase B chain	2713319-2711244
	KdpC	Potassium-transporting ATPase C chain	2711230-2710664
	Х-АВСЗ	Uncharacterized iron compound ABC uptake transporter, ATP-binding protein	2840979-2840221
	Fe-ABC1	Iron compound ABC uptake transporter substrate-binding protein	2840197-2839241
	TrpB	Anthranilate phosphoribosyltransferase	3848094-3844706
	TrpD	Indole-3-glycerol phosphate synthase	3847079-3846312
Stress response related genes	AhpC	Alkyl hydroperoxide reductase subunit C-like protein	1073806-1074354
	BetB	Betaine aldehyde dehydrogenase	4592262-4593746
	OpuAA	Glycine betaine ABC transport system, ATP-binding protein OpuAA	1272624-1273877
	OpuAB	Glycine betaine ABC transport system, permease protein OpuAB	1273880-1274743
	GbsB	Alcohol dehydrogenase GbsB (type III)	4593768-4594970
	SodB	Superoxide dismutase [Fe]	2390241-2389357
	SodC	Superoxide dismutase [Cu-Zn] precursor	1813126-1813716
	GlpF	Glycerol uptake facilitator protein	262037-262864
	GlpK	Glycerol kinase	262932-264422
	Chb	Cyanoglobin; Hemoglobin-like protein HbN	2080787-2081149
	ProA	Gamma-glutamyl phosphate reductase	1969310-1970572
	ProB	Glutamate 5-kinase / RNA-binding C-terminal domain PUA	1968089-1969195

Table 2. PGP and stress resistance genes annotation of P. megaterium 10.

002 with the accession number CP003017.1. An ANI of 99.2% was shared between the two genomes.

The functional annotation of *P. megaterium* genome revealed the presence of plant growth-promoting (PGP) and stress-resistance genes, as highlighted in Table 2. Notably, genes involved in nitrogen metabolism, such as *NorDQ*, *Amt*, and *GltD* were identified. Additionally, genes associated with phosphate, sulfate, potassium, and indole-3-acetic acid (IAA) metabolism, including *PhoHPUR*, *CysAC*, *KdpABC*, and *TrpBD*, were present [10, 11]. The annotation further showed the presence of iron acquisition systems, specifically siderophores production, which play a role in pathogen inhibition and nutrient assimilation [12]. These systems are encoded by genes X-ABC3, Fe-ABC1, ABC2, and ABC3 [13]. Furthermore, genes associated with stress resistance, including BetB, OpuAA, OpuAB, GbsB, SodBC, and GLPFK, were detected [14]. Osmoprotectant molecules like betaines, amino acids, and sugars synthesized under stress conditions are crucial for reactive oxygen species (ROS) detoxification [15]. Similarly, other detoxification genes, such as Chb, and ProAB, involved in stress alleviation, were also identified.

P. megaterium 10 has been proven to harbor potential genes that enhance plant growth and stress resistance. Hence, the agricultural application of this strain may improve plant yield and stress resilience under both biotic and abiotic conditions. The investigation of the

functional properties of *P. megaterium* 10 has shown its potential role as a beneficial PGPB for maintaining plant fertility and productivity.

Nucleotide Sequence Accession Number(s)

The genome of *P. megaterium* strain 10 and its plasmids P1, P2, P3, and P4 have been submitted to DDKJ/ENA/GenBank under the accession numbers CP162497.1, CP162498.1, CP162499.1, CP162500.1, and CP162501.1 respectively. BioProject and BioSample numbers are PRJ-NA1133222 and SAMN42379998 respectively.

Acknowledgments

This research was supported by the Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ015697)" Rural Development Administration, and the biological materials specialized graduate program through the Korea Environmental Industry & Technology Institute(KEITI), funded by the Ministry of Environment(MOE), and by a grant from the Korea Basic Science Institute (National Research Facilities and Equipment Center) funded by the Ministry of Education(2021R1A6C101A416), Republic of Korea.

Conflict of Interest

The authors have no financial conflicts of interest to declare.

References

- Vezzani FM, Anderson C, Meenken E, Gillespie R, Peterson M, Beare MH. 2018. The importance of plants to development and maintenance of soil structure, microbial communities and ecosystem functions. *Soil Tillage Res.* 175: 139-149.
- Brilli F, Fares S, Ghirardo A, de Visser P, Calatayud V, Muñoz A, *et al.* 2018. Plants for sustainable improvement of indoor air quality. *Trends Plant Sci.* 23: 507-512.
- Majeed A, Muhammad Z, Ahmad H. 2018. Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. *Plant Cell Rep.* 37: 1599-1609.
- 4. Motaleb NA, Elhady SA, Ghoname A. 2020. AMF and *Bacillus* megaterium neutralize the harmful effects of salt stress on bean

plants. Gesunde Pflanz. 72: 29-39.

- Wick RR, Judd LM, Holt KE. 2019. Performance of neural network basecalling tools for Oxford nanopore sequencing. *Genome Biol.* 20: 1-10.
- Kolmogorov M, Yuan J, Lin Y, Pevzner PA. 2019. Assembly of long, error-prone reads using repeat graphs. *Nat. Biotechnol.* 37: 540-546.
- Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. 2016. NCBI prokaryotic genome annotation pipeline. *Nucleic Acids Res.* 44: 6614-6624.
- Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. 2014. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). *Nucleic Acids Res.* 42: D206-D214.
- Grant JR, Enns E, Marinier E, Mandal A, Herman EK, Chen C-Y, et al. 2023. Proksee: in-depth characterization and visualization of bacterial genomes. *Nucleic Acids Res.* 51: W484-W492.
- Narayanasamy S, Thankappan S, Kumaravel S, Ragupathi S, Uthandi S. 2023. Complete genome sequence analysis of a plant growth-promoting phylloplane *Bacillus altitudinis* FD48 offers mechanistic insights into priming drought stress tolerance in rice. *Genomics* **115**: 110550.
- Zamanzadeh-Nasrabadi SM, Mohammadiapanah F, Hosseini-Mazinani M, Sarikhan S. 2023. Salinity stress endurance of the plants with the aid of bacterial genes. *Front. Genet.* 14: 1049608.
- Singh P, Chauhan PK, Upadhyay SK, Singh RK, Dwivedi P, Wang J, et al. 2022. Mechanistic insights and potential use of siderophores producing microbes in rhizosphere for mitigation of stress in plants grown in degraded land. *Front. Microbiol.* 13: 898979.
- Helué M-SP, Valeria V-R, Gustavo S, Sajjad H, Debasis M, Norma Á-A, Isela P-CF. 2024. Draft genome of a biological control agent against *Bipolaris sorokiniana*, the causal phytopathogen of spot blotch in wheat (*Triticum turgidum* L. subsp. durum): *Bacillus inaquosorum* TSO22. *Open Agric*. 9: 1000571-1000542.
- Castaldi S, Valkov VT, Ricca E, Chiurazzi M, Isticato R. 2023. Use of halotolerant *Bacillus amyloliquefaciens* RHF6 as a bio-based strategy for alleviating salinity stress in *Lotus japonicus* cv Gifu. *Microbiol. Res.* 268: 127274.
- Niazian M, Sadat-Noori SA, Tohidfar M, Mortazavian SMM, Sabbatini P. 2021. Betaine aldehyde dehydrogenase (BADH) vs. flavodoxin (Fld): Two important genes for enhancing plants stress tolerance and productivity. *Front. Plant Sci.* **12**: 650215.