DOI QR코드

DOI QR Code

An Overview of Extremophile: Microbial Diversity, Adaptive Strategies, and Potential Applications

  • Meglali Amina (Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Faculty of Natural and Life Sciences, Department of Biology, University of Saida ) ;
  • Ghellai Lotfi (Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Faculty of Natural and Life Sciences, Department of Biology, University of Saida )
  • 투고 : 2024.06.14
  • 심사 : 2024.08.30
  • 발행 : 2024.09.28

초록

The microorganisms that live under extreme conditions on Earth are known as extremophiles. They possess an extraordinary capability to endure extreme conditions, including salinity, temperature variations, pH, desiccation, and nutrient scarcity, among others. These organisms, including a vast array of bacteria, eukarya, and archaea, have evolved specialized structural and functional adaptations that make them capable of thriving in extremely selective environments in such a way that they showcase remarkable adaptations that push the limits of what we consider habitable. This capability results in valuable compounds with great potential for developing novel pharmaceuticals and biotechnological innovations. The present review paper aims to summarize current knowledge on the diversity of extremophilic microorganisms and the adaptive strategies employed to face such a range of extreme conditions. Particular attention will be given to temperature, salinity, pH, and desiccation adaptation. The review also highlights their potential applications, specifically focusing on pharmaceutical and biotechnological applications.

키워드

참고문헌

  1. Das T, Al-Tawaha AR, Pandey DK, Nongdam P, Shekhawat MS, Dey A, et al. 2022. Halophilic, Acidophilic, Alkaliphilic, Metallophilic, and Radioresistant Fungi: Habitats and Their Living Strategies. Extremophilic Fungi pp.171-193. doi.org/10.1007/978-981-16-4907-3_9. 
  2. Shu WS, Huang LN. 2022. Microbial diversity in extreme environments. Nat. Rev. Microbiol. 20: 219-235. 
  3. Belyagoubi L, Belyagoubi-Benhammou N, Jurado V, Dupont J, Lacoste S, Djebbah F, et al. 2018. Antimicrobial activities of culturable microorganisms (actinomycetes and fungi) isolated from Chaabe Cave, Algeria. Int. J. Speleol. 47: 189-199. 
  4. Lo Giudice A, Gugliandolo C. 2019. A special issue on microorganisms from extreme environments in memory of luigi michaud (1974-2014). Diversity 12: 2. 
  5. Perez-Llano Y, Rodriguez-Pupo EC, Druzhinina IS, Chenthamara K, Cai F, Gunde-Cimerman N, et al. 2020. Stress reshapes the physiological response of halophile fungi to salinity. Cells 9: 525. 
  6. Dheeran P, Kumar S. 2023. Extremophiles Biofilm Behavior, Characterization and Economical Applications. Extremophiles: Wastewater and Algal Biorefinery, 1st ed. CRC Press. doi.org/10.1201/9781003335221. 
  7. Di Donato P, Buono A, Poli A, Finore I, Abbamondi G, Nicolaus B, et al. 2018. Exploring marine environments for the identification of extremophiles and their enzymes for sustainable and green bioprocesses. Sustainability 11: 149. 
  8. Horikoshi K. 2021. Alkaliphiles. Routledge. doi.org/10.1201/9781315137155. 
  9. Vester JK, Glaring MA, Stougaard P. 2015. Improved cultivation and metagenomics as new tools for bioprospecting in cold environments. Extremophiles 19: 17-29. 
  10. Gutleben J, Chaib De Mares M, Van Elsas JD, Smidt H, Overmann J, Sipkema D. 2018. The multi-omics promise in context: from sequence to microbial isolate. Crit. Rev. Microbiol. 44: 212-229. 
  11. Aertsen A, Michiels CW. 2004. Stress and how bacteria cope with death and survival. Crit. Rev. Microbiol. 30: 263-273. 
  12. Canganella F, Wiegel J. 2011. Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften 98: 253-279. 
  13. Moopantakath J, Imchen M, Anju VT, Busi S, Dyavaiah M, Martinez-Espinosa RM, et al. 2023. Bioactive molecules from haloarchaea: Scope and prospects for industrial and therapeutic applications. Front. Microbiol. 14: 1113540. 
  14. Gupta GN, Srivastava S, Khare SK, Prakash V. 2014. Extremophiles: An overview of microorganism from extreme environment. Int. J. Agric. Environ. Biotechnol. 7: 371. 
  15. Rothschild LJ, Mancinelli RL. 2001. Life in extreme environments. Nature 409: 1092-1101. 
  16. Kour D, Rana KL, Kaur T, Singh B, Chauhan VS, Kumar A, et al. 2019. Extremophiles for hydrolytic enzymes productions: Biodiversity and potential biotechnological applications. Bioprocessing Biomol. Prod. pp. 321-372. doi.org/10.1002/9781119434436.ch16. 
  17. Bonch-Osmolovskaya E, Atomi H. 2015. Editorial overview: Extremophiles: From extreme environments to highly stable biocatalysts. Curr. Opin. Microbiol. 25: 7-8. 
  18. Ruparelia J, Rabari A, Joshi N, Jha CK. 2022. Isolation methods for evaluation of extremophilic microbial diversity from Antarctica region. Microb. Div. Hotspots. 267-289. doi.org/10.1016/B978-0-323-90148-2.00008-0. 
  19. Giovanella P, Vieira GAL, Ramos Otero IV, Pais Pellizzer E, De Jesus FB, Sette LD. 2020. Metal and organic pollutants bioremediation by extremophile microorganisms. J. Hazard. Mater. 382: 121024. 
  20. Das S, Dash HR, Mangwani N, Chakraborty J, Kumari S. 2014. Understanding molecular identification and polyphasic taxonomic approaches for genetic relatedness and phylogenetic relationships of microorganisms. J. Microbiol. Methods 103: 80-100. 
  21. Ali N, Nughman M, Shah S. 2023. Extremophiles and limits of life in a cosmic perspective. Life in Extreme Environments-Diversity, Adaptability and Valuable Resources of Bioactive Molecules. doi: 10.5772/intechopen.110471. 
  22. Buzzini P, Turchetti B, Yurkov A. 2018. Extremophilic yeasts: the toughest yeasts around? Yeast 35: 487-497. 
  23. Prieur D. 2012. Extremophiles? Vous avez dit extremophiles?. Biofutur (Puteaux) 336: 26-27. 
  24. Johnson DB, Quatrini R. 2020. Acidophile microbiology in space and time. Curr. Issues Mol. Biol. 39: 63-76. 
  25. Seckbach J, Oren A, Chapman RL, Waters DA, Ross LK, Oren A, et al. 2006. Biodiversity and extremophiles. Life as We Know It 10: 3-143. 
  26. Demirjian DC, Moris-Varas F, Cassidy CS. 2001. Enzymes from extremophiles. Curr. Opin. Chem. Biol. 5: 144-151. 
  27. Temsaah RH, Azmy FA, Raslan M, Ahmed EA, Hozayen GW. 2018. Isolation and characterization of thermophilic enzymes producing microorganisms for potential therapeutic and industrial use. J. Pure Appl. Microbiol. 12: 1687-1702. 
  28. Arbab S, Ullah H, Khan MIU, Khattak MNK, Zhang J, Li K, et al. 2022. Diversity and distribution of thermophilic microorganisms and their applications in biotechnology. J. Basic Microbiol. 62: 95-108. 
  29. Nakagawa T, Nagaoka T, Taniguchi S, Miyaji T, Tomizuka N. 2004. Isolation and characterization of psychrophilic yeasts producing cold-adapted pectinolytic enzymes. Lett. Appl. Microbiol. 38: 383-387. 
  30. Del-Cid A, Ubilla P, Ravanal MC, Medina E, Vaca I, Levican G, et al. 2014. Cold-active xylanase produced by fungi associated with antarctic marine sponges. Appl. Biochem. Biotechnol. 172: 524-532. 
  31. DasSarma S, Berquist BR, Coker JA, DasSarma P, Muller JA. 2006. Post-genomics of the model haloarchaeon Halobacterium sp. NRC-1. Saline Syst. 2: 3. 
  32. Zhao X, Chen G, Wang F, Zhao H, Wei Y, Liu L, et al. 2022. Extraction, characterization, antioxidant activity and rheological behavior of a polysaccharide produced by the extremely salt tolerant Bacillus subtilis LR-1. LWT 162: 113413. 
  33. Benitez-Mateos AI, Paradisi F. 2023. Halomonas elongata: a microbial source of highly stable enzymes for applied biotechnology. Appl. Microbiol. Biotechnol. 107: 3183-3190. 
  34. Marteinsson VT, Birrien JL, Reysenbach AL, Vernet M, Marie D, Gambacorta A, et al. 1999. Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 49: 351-359. 
  35. Pitt JI, Christian JHB. 1968. Water relations of xerophilic fungi isolated from prunes. Appl. Microbiol. 16: 1853-1858. 
  36. Golyshina OV, Pivovarova TA, Karavaiko GI, Kondrateva TF, Moore ER, Abraham WR, et al. 2000. Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int. J. Syst. Evol. Microbiol. 50: 997-1006. 
  37. Kalita D, Joshi SR. 2017. Study on bioremediation of Lead by exopolysaccharide producing metallophilic bacterium isolated from extreme habitat. Biotechnol. Rep. 16: 48-57. 
  38. Kumar R, Merugu R, Mohapatra S, Sharma S. 2022. Extremophiles life of microorganisms in extreme environments. Extremophiles 43-66. doi.org/10.1201/9781003014188. 
  39. Gunjal AB, Badodekar NP. 2022. Halophiles. Advances in Environmental Engineering and Green Technologies. 13-34. doi.org/10.4018/978-1-7998-9144-4.ch002. 
  40. Oren A, Gurevich P, Gemmell RT, Teske A. 1995. Halobaculum gomorrense gen. nov., sp. nov., a novel extremely halophilic archaeon from the dead sea. Int. J. Syst. Bacteriol. 45: 747-754. 
  41. Reed CJ, Lewis H, Trejo E, Winston V, Evilia C. 2013. Protein adaptations in archaeal extremophiles. Archaea 2013: 1-14. 
  42. Menon NR, Jobby R. 2022. Halophiles: properties, adaptations, diversity, and applications. Extremophiles 1: 43-64. 
  43. DasSarma S, DasSarma P. 2015. Halophiles and their enzymes: negativity put to good use. Curr. Opin. Microbiol. 25: 120-126. 
  44. Cavicchioli R, Amils R, Wagner D, McGenity T. 2011. Life and applications of extremophiles: Editorial. Environ. Microbiol. 13: 1903-1907. 
  45. Baker BA, Gutierrez-Preciado A, Rodriguez DRA, McCarthy CGP, Lopez-Garcia P, Huerta-Cepas J. et al. 2023. Several independent adaptations of archaea to hypersaline environments. BioRxiv. 2023.07.03.547478. doi.org/10.1101/2023.07.03.547478. 
  46. Lanyi JK. 1974. Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol. Rev. 38: 272-290. 
  47. Dutta B, Bandopadhyay R. 2022. Biotechnological potentials of halophilic microorganisms and their impact on mankind. Beni-Suef Univ. J. Basic Appl. Sci. 11: 75. 
  48. Roberts MF. 2005. Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst. 1: 5. 
  49. Kurz M. 2008. Compatible solute influence on nucleic acids: Many questions but few answers. Saline Syst. 4: 6. 
  50. Kokoeva MV. 2002. A novel mode of sensory transduction in archaea: binding protein-mediated chemotaxis towards osmoprotectants and amino acids. EMBO J. 21: 2312-2322. 
  51. Jadhav K, Kushwah B, Jadhav I. 2018. Insight into compatible solutes from halophiles: Exploring significant applications in biotechnology. Microbial Bioprospecting for Sustainable Development. pp. 291-307. 
  52. Zhou P, Bu YX, Xu L, Xu XW, Shen HB. 2023. Understanding the mechanisms of halotolerance in members of Pontixanthobacter and Allopontixanthobacter by comparative genome analysis. Front. Microbiol. 14: 1111472. 
  53. Montalvo-Rodriguez R, Maupin-Furlow JA. 2020. Insights through genetics of halophilic microorganisms and their viruses. Genes 11: 388. 
  54. Shah H, Panchal K, Panchal A. 2022. Major compatible solutes and structural adaptation of proteins in extremophiles. Adv. Environ. Eng. Green Technol. pp. 161-186. doi.org/10.4018/978-1-7998-9144-4.ch008. 
  55. Frols S. 2013. Archaeal biofilms: widespread and complex. Biochem. Soc. Trans. 41: 393-398. 
  56. Somayaji A, Dhanjal CR, Lingamsetty R, Vinayagam R, Selvaraj R, Varadavenkatesan T, et al. 2022. An insight into the mechanisms of homeostasis in extremophiles. Microbiol. Res. 263: 127115. 
  57. Sabath N, Ferrada E, Barve A, Wagner A. 2013. Growth temperature and genome size in bacteria are negatively correlated, suggesting genomic streamlining during thermal adaptation. Genome Biol. Evol. 5: 966-977. 
  58. Wang Q, Cen Z, Zhao J. 2015. The survival mechanisms of thermophiles at high temperatures: An angle of omics. Physiology 30: 97-106. 
  59. Neifar M, Maktouf S, Ghorbel RE, Jaouani A, Cherif A. 2015. Extremophiles as source of novel bioactive compounds with industrial potential. Biotechnology of Bioactive Compounds. pp. 245-267. doi.org/10.1002/9781118733103.ch10. 
  60. Wang Z, Tong W, Wang Q, Bai X, Chen Z, Zhao J, et al. 2012. The temperature dependent proteomic analysis of Thermotoga maritima. PLoS One 7: e46463. 
  61. Shih TW, Pan TM. 2011. Stress responses of thermophilic Geobacillus sp. NTU 03 caused by heat and heat-induced stress. Microbiol. Res. 166: 346-359. 
  62. Oshima M, Miyagawa A. 1974. Comparative studies on the fatty acid composition of moderately and extremely thermophilic bacteria. Lipids 9: 476-480. 
  63. Ray PH, White DC, Brock TD. 1971. Effect of growth temperature on the lipid composition of Thermus aquaticus. J. Bacteriol. 108: 227-235. 
  64. Siliakus MF, Van Der OJ, Kengen SWM. 2017. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 21: 651-670. 
  65. Hertle E, Ursinus A, Martin J. 2024. Low-temperature features of the psychrophilic chaperonin from Pseudoalteromonas haloplanktis. Arch. Microbiol. 206: 299. 
  66. Liao Z, Gopalasingam CC, Kameya M, Gerle C, Shigematsu H, Ishii M, et al. 2024. Structural insights into thermophilic chaperonin complexes. Structure 32: 679-689.e4. 
  67. Mohanty A, Shilpa, Meena SS. 2022. Microbial adaptation to extreme temperatures: an overview of molecular mechanisms to industrial application. Extremozymes and Their Industrial Applications. pp. 115-139. doi.org/10.1016/B978-0-323-90274-8.00009-5. 
  68. Ramasamy KP, Mahawar L, Rajasabapathy R, Rajeshwari K, Miceli C, Pucciarelli S. 2023. Comprehensive insights on environmental adaptation strategies in Antarctic bacteria and biotechnological applications of cold adapted molecules. Front. Microbiol. 14: 1197797. 
  69. Di Lorenzo F, Crisafi F, La Cono V, Yakimov MM, Molinaro A, Silipo A. 2020. The structure of the lipid A of Gram-negative cold-adapted bacteria isolated from antarctic environments. Mar. Drugs 18: 592. 
  70. Hassan N, Anesio AM, Rafiq M, Holtvoeth J, Bull I, Haleem A, et al. 2020. Temperature driven membrane lipid adaptation in glacial psychrophilic bacteria. Front. Microbiol. 11: 824. 
  71. Kaur A, Capalash N, Sharma P. 2019. Communication mechanisms in extremophiles: Exploring their existence and industrial applications. Microbiol. Res. 221: 15-27. 
  72. Choudhary P, Bhatt S, Chatterjee S. 2024. From freezing to functioning: Cellular strategies of cold-adapted bacteria for surviving in extreme environments. Arch. Microbiol. 206: 329. 
  73. Goordial Goordial J, Raymond-Bouchard I, Zolotarov Y, De Bethencourt L, Ronholm J, Shapiro N, et al. 2016. Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica. FEMS Microbiol. Ecol. 92: fiv154. 
  74. Kim EJ, Kim JE, Hwang JS, Kim IC, Lee SG, Kim S, et al. 2019. Increased productivity and antifreeze activity of ice-binding protein from Flavobacterium frigoris PS1 produced using Escherichia coli as bioreactor. Appl. Biochem. Microbiol. 55: 489-494. 
  75. Chen X, Wu J, Yang F, Zhou M, Wang R, Huang J, et al. 2023. New insight into the mechanism by which antifreeze peptides regulate the physiological function of Streptococcus thermophilus subjected to freezing stress. J. Adv. Res. 45: 127-140. 
  76. Pandey N, Jain R, Pandey A, Tamta S. 2018. Optimisation and characterisation of the orange pigment produced by a cold adapted strain of Penicillium sp. (GBPI_P155) isolated from mountain ecosystem. Mycology 9: 81-92. 
  77. Bala K, Ghosh T, Kumar V, Sangwan P. 2024. Harnessing Microbial Potential for Multifarious Applications. Energy, Environment, and Sustainability. 1st ed. doi.org/10.1007/978-981-97-1152-9. 
  78. Collins T, Margesin R. 2019. Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools. Appl. Microbiol. Biotechnol. 103: 2857-2871. 
  79. Kohli I, Joshi NC, Mohapatra S, Varma A. 2020. Extremophile - An adaptive strategy for extreme conditions and applications. Curr. Genomics 21: 96-110. 
  80. Goswami S, Das M. 2016. Extremophiles- A clue to origin of life and biology of other planets. Everyman's Sci. 51: 17-25. 
  81. Jin Q, Kirk MF. 2018. pH as a primary control in environmental microbiology: 1. Thermodynamic Perspective. Front. Environ. Sci. 6: 21. 
  82. Krulwich TA, Sachs G, Padan E. 2011. Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Microbiol. 9: 330-343. 
  83. Sharma A, Kawarabayasi Y, Satyanarayana T. 2012. Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications. Extremophiles 16: 1-19. 
  84. Baker-Austin C, Dopson M. 2007. Life in acid: pH homeostasis in acidophiles. Trends Microbiol. 15: 165-171. 
  85. Matin A. 2007. pH Homeostasis in Acidophiles. Novartis Foundation Symposia. 152-166. doi: 10.1002/9780470515631.ch10. 
  86. Buetti-Dinh A, Dethlefsen O, Friedman R, Dopson M. 2016. Transcriptomic analysis reveals how a lack of potassium ions increases Sulfolobus acidocaldarius sensitivity to pH changes. Microbiology 162: 1422-1434. 
  87. Christel S, Herold M, Bellenberg S, El Hajjami M, Buetti-Dinh A, Pivkin IV, et al. 2018. Multi-omics reveals the lifestyle of the acidophilic, mineral-oxidizing model species Leptospirillum ferriphilum T. Appl. Environ. Microbiol. 84: e02091-17. 
  88. Mallick S, Das S. 2023. Acid-tolerant bacteria and prospects in industrial and environmental applications. Appl. Microbiol. Biotechnol. 107: 3355-3374. 
  89. Lin J, Lin J, Chen LX. 2021. Acidophiles - Fundamentals and applications. IntechOpen. doi: 10.5772/intechopen.87574. 
  90. Zhang Y, Liang S, Zhang S, Bai Q, Dai L, Wang J, et al. 2024. Streptococcal arginine deiminase system defences macrophage bactericidal effect mediated by XRE family protein XtrSs. Virulence 15: 2306719. 
  91. Arab M, Baoune H, Hannous I. 2022. Implication of Enzymes in the Adaptation of Extremophilic Microbes. Ecol Interplays Microb Enzymol. pp. 279-292. doi.org/10.1007/978-981-19-0155-3_13. 
  92. Chen L, Ren Y, Lin J, Liu X, Pang X, Lin J. 2012. Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant. PLoS One 7: e39470. 
  93. Rowe OF, Sanchez-Espana J, Hallberg KB, Johnson DB. 2007. Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems: Microbial communities in an extremely acidic stream. Environ. Microbiol. 9: 1761-1771. 
  94. Mukhtar S, Rashid N, Farhan Ul Haque M, Malik KA. 2022. Metagenomic approach for the isolation of novel extremophiles. Microbial Extremozymes. 55-66. doi.org/10.1016/B978-0-12-822945-3.00010-5. 
  95. Izquierdo-Fiallo K, Munoz-Villagran C, Orellana O, Sjoberg R, Levican G. 2023. Comparative genomics of the proteostasis network in extreme acidophiles. PLoS One 18: e0291164. 
  96. Cortez D, Neira G, Gonzalez C, Vergara E, Holmes DS. 2022. A large-scale genome-based survey of acidophilic bacteria suggests that genome streamlining is an adaption for life at low pH. Front. Microbiol. 13: 803241. 
  97. Alam M, Kumar Tiwary B. 2023. Extremophiles: Diversity, Adaptation and Applications. Bentham science publishers. doi.org/10.2174/97898150803531220101. 
  98. Dhakar K, Pandey A. 2016. Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology. Appl. Microbiol. Biotechnol. 100: 2499-2510. 
  99. Patino-Ruiz M, Ganea C, Calinescu O. 2022. Prokaryotic Na+/H+ exchangers-transport mechanism and essential residues. Int. J. Mol. Sci. 23: 9156. 
  100. Salwan R, Sharma V. 2022. Genomics of prokaryotic extremophiles to unfold the mystery of survival in extreme environments. Microbiol. Res. 264: 127156. 
  101. Deosthali C, Sajwani ND. 2022. Extremophiles: Applications and adaptive strategies. Int. J. Res. Trends Innovation. 7: 10.1729.  https://doi.org/10.1729
  102. Koivulehto M, Battchikova N, Korpela S, Khalikova E, Zavialov A, Korpela T. 2020. Comparison of kinetic and enzymatic properties of intracellular phosphoserine aminotransferases from alkaliphilic and neutralophilic bacteria. Open Chem. 18: 149-164. 
  103. Sahay S. 2022. Extremophilic fungi: Ecology, physiology and applications. Extremophilic Fungi. doi.org/10.1007/978-981-16-4907-3. 
  104. Lebre PH, Cowan DA. 2020. Genomics of alkaliphiles. Alkaliphiles in Biotechnology. 172: 135-155. 
  105. Stevenson A, Cray JA, Williams JP, Santos R, Sahay R, Neuenkirchen N, et al. 2015. Is there a common water-activity limit for the three domains of life?. ISME J. 9: 1333-1351. 
  106. Coclet C, Cowan D, Lebre PH. 2022. Survival under stress: Microbial adaptation in hot desert soils. Microbiol. Hot Deserts 244: 293-317. 
  107. Karan R, Capes MD, DasSarma S. 2012. Function and biotechnology of extremophilic enzymes in low water activity. Aquat. Biosyst. 8: 4. 
  108. Van De Mortel M, Halverson LJ. 2004. Cell envelope components contributing to biofilm growth and survival of Pseudomonas putida in low-water-content habitats: Adaptation of P. putida to matric water stress. Mol. Microbiol. 52: 735-750. 
  109. Wang Y, Ling N, Jiao R, Zhang X, Ren Y, Li H, et al. 2023. Transcriptomic analysis reveals novel desiccation tolerance mechanism of Cronobacter based on type VI secretion system inhibition. Food Res. Int. 172: 113143. 
  110. Lebre PH, De Maayer P, Cowan DA. 2017. Xerotolerant bacteria: surviving through a dry spell. Nat. Rev. Microbiol. 15: 285-296. 
  111. Kocharunchitt C, King T, Gobius K, Bowman JP, Ross T. 2012. Integrated transcriptomic and proteomic analysis of the physiological response of Escherichia coli O157:H7 sakai to steady-state conditions of cold and water activity stress. Mol. Cell Proteomics 11: M111.009019. 
  112. Finn S, Condell O, McClure P, Amezquita A, Fanning S. 2013. Mechanisms of survival, responses and sources of Salmonella in low-moisture environments. Front. Microbiol. 4: 331. 
  113. Li H, Bhaskara A, Megalis C, Tortorello ML. 2012. Transcriptomic analysis of Salmonella desiccation resistance. Foodborne Pathog. Dis. 9: 1143-1151. 
  114. Brown GR, Sutcliffe IC, Bendell D, Cummings SP. 2000. The modification of the membrane of Oceanomonas baumannii T when subjected to both osmotic and organic solvent stress. FEMS Microbiol. Lett. 189: 149-154. 
  115. Mutnuri S, Vasudevan N, Kastner M, Heipieper HJ. 2005. Changes in fatty acid composition of Chromohalobacter israelensis with varying salt concentrations. Curr. Microbiol. 50: 151-154. 
  116. Halverson LJ, Firestone MK. 2000. Differential effects of permeating and nonpermeating solutes on the fatty acid composition of Pseudomonas putida. Appl. Environ. Microbiol. 66: 2414-2421. 
  117. Ophir T, Gutnick DL. 1994. A Role for Exopolysaccharides in the protection of microorganisms from desiccation. Appl. Environ. Microbiol. 60: 740-745. 
  118. Sarma J, Sengupta A, Laskar MK, Sengupta S, Tenguria S, Kumar A. 2023. Microbial adaptations in extreme environmental conditions. Bacterial Survival in the Hostile Environment. 193-206. doi.org/10.1016/B978-0-323-91806-0.00007-2. 
  119. Dworkin J, Shah IM. 2010. Exit from dormancy in microbial organisms. Nat. Rev. Microbiol. 8: 890-896. 
  120. Vriezen JA, De Bruijn FJ, Nusslein KR. 2012. Desiccation induces viable but non-culturable cells in Sinorhizobium meliloti 1021. AMB Express 2: 6. 
  121. Zhao L, Zhou Y, Li J, Xia Y, Wang W, Luo X, et al. 2020. Transcriptional response of Bacillus megaterium FDU301 to PEG200-mediated arid stress. BMC Microbiol. 20: 351. 
  122. Charlesworth J, Burns BP. 2016. Extremophilic adaptations and biotechnological applications in diverse environments. AIMS Microbiol. 2: 251-261. 
  123. Parrilli E, Tedesco P, Fondi M, Tutino ML, Lo Giudice A, De Pascale D, et al. 2021. The art of adapting to extreme environments: The model system Pseudoalteromonas. Phys Life Rev. 36: 137-161. 
  124. Salwan R, Sharma V. 2020. Overview of extremophiles. Physiological and Biotechnological Aspects of Extremophiles. 3-11. doi.org/10.1016/B978-0-12-818322-9.00001-0. 
  125. Mitra A, Banik A. 2022. Xerophiles. Extremophiles: diversity, adaptation and applications. 8: 202-222. 
  126. Irwin JA. 2020. Overview of extremophiles and their food and medical applications. Physiological and Biotechnological Aspects of Extremophiles. 65-87. doi.org/10.1016/B978-0-12-818322-9.00006-X. 
  127. Gatinho P, Salvador C, Silva AM, Caldeira AT. 2023. Prokaryotic communities from pristine cave environments: Biotechnological potential with sustainable production. Sustainability 15: 7471. 
  128. Wei B, Luo X, Zhou ZY, Hu GA, Li L, Lin HW, et al. 2024. Discovering the secondary metabolic potential of Saccharothrix. Biotechnol. Adv. 70: 108295. 
  129. Tian J, Chen H, Guo Z, Liu N, Li J, Huang Y, et al. 2016. Discovery of pentangular polyphenols hexaricins A-C from marine Streptosporangium sp. CGMCC 4.7309 by genome mining. Appl. Microbiol. Biotechnol. 100: 4189-4199. 
  130. Chaabane Chaouch F, Bouras N, Mokrane S, Zitouni A, Schumann P, Sproer C, et al. 2016. Streptosporangium becharense sp. nov., an actinobacterium isolated from desert soil. Int. J. Syst. Evol. Microbiol. 66: 2484-2490. 
  131. Cortes-Albayay C, Silber J, Imhoff JF, Asenjo JA, Andrews B, Nouioui I, et al. 2019. The polyextreme ecosystem, Salar de Huasco at the Chilean Altiplano of the Atacama Desert houses diverse Streptomyces spp. with promising pharmaceutical potentials. Diversity 11: 69. 
  132. Velmurugan S, Raman K, Thanga Viji V, Donio MBS, Adlin J, Babu MM, et al. 2013. Screening and characterization of antimicrobial secondary metabolites from Halomonas salifodinae MPM-TC and its in vivo antiviral influence on Indian white shrimp Fenneropenaeus indicus against WSSV challenge. J. King Saud. Univ. - Sci. 25: 181-190. 
  133. Chen L, Wang G, Bu T, Zhang Y, Wang Y, Liu M, et al. 2010. Phylogenetic analysis and screening of antimicrobial and cytotoxic activities of moderately halophilic bacteria isolated from the Weihai Solar Saltern (China). World J. Microbiol. Biotechnol. 26: 879-888. 
  134. More S, Shinde V, Khan Saiqua GA, Pawar V. 2012. Antimicrobial activity of phospholipid compound produced by acidophilic Bacillus subtilis isolated from Lonar Lake, Buldhana, India. Res. J. Recent. Sci. 2277: 2502. 
  135. Ibrahim KS, Aishwarya M, Kannan RPB. 2023. Secondary metabolites from extremophiles with therapeutic benefits. Recent Advances and Future Perspectives of Microbial Metabolites. 249-267. doi.org/10.1016/B978-0-323-90113-0.00011-0. 
  136. Belyaeva KV, Nikitina LP, Gen' VS, Tomilin DN, Sobenina LN, Afonin AV, et al. 2022. 1-Methylimidazole as an Organic Catalyst for [3+3]-Cyclodimerization of Acylethynylpyrroles to Bis(acylmethylidene)dipyrrolo[1,2-a:1',2'-d]pyrazines. Catalysts 12: 1604. 
  137. Borchert E, Jackson SA, O'Gara F, Dobson ADW. 2017. Psychrophiles as a source of novel antimicrobials. Psychrophiles: From Biodiversity to Biotechnology. 527-540. doi:10.1007/978-3-319-57057-0_22. 
  138. Baindara P, Roy D, Mandal SM. 2024. Marine bacteriocins: An evolutionary gold mine to payoff antibiotic resistance. Mar. Drugs 22: 388. 
  139. Wang YT, Xue YR, Liu CH. 2015. A brief review of bioactive metabolites derived from deep-sea fungi. Mar. Drugs 13: 4594-4616. 
  140. Kazak H, Toksoy Oner E, Dekker RFH. 2010. Extremophiles as sources of exopolysaccharides. Carbohydrate Polymers: Development, Properties and Applications. 605-619. doi.org/10.13140/2.1.3109.9843. 
  141. Morris GA, Li P, Puaud M, Liu Z, Mitchell JR, Harding SE. 2001. Hydrodynamic characterisation of the exopolysaccharide from the halophilic cyanobacterium Aphanothece halophytica GR02: a comparison with xanthan. Carbohydr. Polym. 44: 261-268. 
  142. Zhu D, Adebisi WA, Ahmad F, Sethupathy S, Danso B, Sun J. 2020. Recent development of extremophilic bacteria and their application in biorefinery. Front. Bioeng. Biotechnol. 8: 483. 
  143. Espina G, Atalah J, Blamey JM. 2021. Extremophilic oxidoreductases for the industry: five successful examples with promising projections. Front. Bioeng. Biotechnol. 9: 710035. 
  144. Pham VHT, Kim J, Chang S, Bang D. 2023. Investigating bioinspired degradation of toxic dyes using potential multienzyme producing extremophiles. Microorganisms 11: 1273. 
  145. Kikani B, Patel R, Thumar J, Bhatt H, Rathore DS, Koladiya GA, et al. 2023. Solvent tolerant enzymes in extremophiles: Adaptations and applications. Int. J. Biol. Macromol. 238: 124051. 
  146. Bosi E, Fondi M, Maida I, Perrin E, De Pascale D, Tutino ML, et al. 2015. Genome-scale phylogenetic and DNA composition analyses of Antarctic Pseudoalteromonas bacteria reveal inconsistencies in current taxonomic affiliation. Hydrobiologia 761: 85-95. 
  147. Daoud L, Ben Ali M. 2020. Halophilic microorganisms: Interesting group of extremophiles with important applications in biotechnology and environment. Physiological and Biotechnological Aspects of Extremophiles. 51-64. doi.org/10.1016/B978-0-12-818322-9.00005-8. 
  148. Yadav AN, Kaur T, Devi R, Kour D, Yadav N. 2021. Biodiversity and biotechnological applications of extremophilic microbiomes: current research and future challenges. Microb. Extreme Environ. 1: 278-290. 
  149. Elleuche S, Schroder C, Sahm K, Antranikian G. 2014. Extremozymes - biocatalysts with unique properties from extremophilic microorganisms. Curr. Opin. Biotechnol. 29: 116-123. 
  150. Mesbah NM. 2022. Industrial biotechnology based on enzymes from extreme environments. Front. Bioeng. Biotechnol. 10: 870083. 
  151. Fujinami S, Fujisawa M. 2010. Industrial applications of alkaliphiles and their enzymes - past, present and future. Environ. Technol. 31: 845-856. 
  152. Chowdhury S, Kabir ABMR, Jyoti Debnath A, Akib Hossain S, Sinha D. 2022. An overview of extremophiles as microbial armament for bioremediation. Extremophiles 1: 245-268. 
  153. Aguilar A, Ingemansson T, Magnien E. 1998. Extremophile microorganisms as cell factories: support from the European Union. Extremophiles 2: 367-373. 
  154. Wang Y, Qian J, Shi T, Wang Y, Ding Q, Ye C. 2024. Application of extremophile cell factories in industrial biotechnology. Enzyme Microb. Technol. 175: 110407. 
  155. Yaiche Achour H, Saadi SA. 2023. African salt lakes: distribution, microbial biodiversity, and biotechnological potential. Lakes of Africa. 501-525. doi.org/10.1016/B978-0-323-95527-0.00009-9. 
  156. Rezaie R, Rezaei S, Jafari N, Forootanfar H, Khoshayand MR, Faramarzi MA. 2017. Delignification and detoxification of peanut shell bio-waste using an extremely halophilic laccase from an Aquisalibacillus elongatus isolate. Extremophiles 21: 993-1004. 
  157. Schroder C, Burkhardt C, Antranikian G. 2020. What we learn from extremophiles. ChemTexts. 6: 8. 
  158. Dalmaso G, Ferreira D, Vermelho A. 2015. Marine extremophiles: A source of hydrolases for biotechnological applications. Mar. Drugs 13: 1925-1965. 
  159. Parihar J, Bagaria A. 2019. The extremes of life and extremozymes: Diversity and perspectives. Acta Sci. Microbiol. 3: 107-119. 
  160. Chettri D, Verma AK, Sarkar L, Verma AK. 2021. Role of extremophiles and their extremozymes in biorefinery process of lignocellulose degradation. Extremophiles 25: 203-219. 
  161. Gupta GN, Srivastava S, Khare SK, Prakash V. 2014. Extremophiles: An overview of microorganism from extreme environment. Int. J. Agric. Environ. Biotechnol. 7: 371-380. 
  162. Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, et al. 2015. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait: Root bacteria protect plants from drought. Environ. Microbiol. 17: 316-331.