Acknowledgement
The work was funded by the Chonnam Natinal University Supporting Program and was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-002), by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Crop Viruses and Pests Response Industry Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA)(Grant no. 321109-04-1-HD020), Republic of Korea.
References
- Mach H, Volkin DB, Troutman RD, Wang B, Luo Z, Jansen KU, et al. 2006. Disassembly and reassembly of yeast-derived recombinant human papillomavirus virus-like particles (HPV VLPs). J. Pharm. Sci. 95: 2195-2206.
- Braaten KP, Laufer MR. 2008. Human papillomavirus (HPV), HPV-related disease, and the HPV vaccine. Rev. Obstet. Gynecol. 1: 2.
- Mustopa AZ, Meilina L, Irawan S, Ekawati N, Fathurahman AT, Triratna L, et al. 2022. Construction, expression, and in vitro assembly of virus-like particles of L1 protein of human papillomavirus type 52 in Escherichia coli BL21 DE3. J. Genet. Eng. Biotechnol. 20: 19.
- Forman D, De Martel C, Lacey CJ, Soerjomataram I, Lortet-Tieulent J, Bruni L, et al. 2012. Global burden of human papillomavirus and related diseases. Vaccine 30: F12-F23.
- Le DT, Muller KM. 2021. In vitro assembly of virus-like particles and their applications. Life 11: 334.
- Chen XS, Garcea RL, Goldberg I, Casini G, Harrison SC. 2000. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol. Cell 5: 557-567.
- Zhao Q, Modis Y, High K, Towne V, Meng Y, Wang Y, et al. 2012. Disassembly and reassembly of human papillomavirus virus-like particles produces more virion-like antibody reactivity. Virol. J. 9: 52.
- Buck CB, Day PM, Trus BL. 2013. The papillomavirus major capsid protein L1. Virology 445: 169-174.
- Hagensee ME, Yaegashi N, Galloway D. 1993. Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J. Virol. 67: 315-322.
- Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, et al. 2021. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnology 19: 59.
- Zeltins A. 2013. Construction and characterization of virus-like particles: a review. Mol. Biotechnol. 53: 92-107.
- Franco EL, Harper DM. 2005. Vaccination against human papillomavirus infection: a new paradigm in cervical cancer control. Vaccine 23: 2388-2394.
- Zaman R, Islam RA, Ibnat N, Othman I, Zaini A, Lee CY, et al. 2019. Current strategies in extending half-lives of therapeutic proteins. J. Control. Release 301: 176-189.
- Lim SI, Hahn YS, Kwon I. 2015. Site-specific albumination of a therapeutic protein with multi-subunit to prolong activity in vivo. J. Control. Release 207: 93-100.
- Yang B, Kwon I. 2021. Multivalent albumin-neonatal Fc receptor interactions mediate a prominent extension of the serum half-life of a therapeutic protein. Mol. Pharm. 18: 2397-2405.
- Dennis MS, Zhang M, Meng YG, Kadkhodayan M, Kirchhofer D, Combs D, et al. 2002. Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J. Biol. Chem. 277: 35035-35043.
- Cho J, Lim SI, Yang BS, Hahn YS, Kwon I. 2017. Generation of therapeutic protein variants with the human serum albumin binding capacity via site-specific fatty acid conjugation. Sci. Rep. 7: 18041.
- Chin JW. 2017. Expanding and reprogramming the genetic code. Nature 550: 53-60.
- Shandell MA, Tan Z, Cornish VW. 2021. Genetic code expansion: a brief history and perspective. Biochemistry 60: 3455-3469.
- Wang N, Li Y, Niu W, Sun M, Cerny R, Li Q, et al. 2014. Construction of a live-attenuated HIV-1 vaccine through genetic code expansion. Angewandte Chemie 126: 4967-4971.
- Cho H, Daniel T, Buechler YJ, Litzinger DC, Maio Z, Putnam A-MH, et al. 2011. Optimized clinical performance of growth hormone with an expanded genetic code. Proc. Natl. Acad. Sci. USA 108: 9060-9065.
- Luo X, Zambaldo C, Liu T, Zhang Y, Xuan W, Wang C, et al. 2016. Recombinant thiopeptides containing noncanonical amino acids. Proc. Natl. Acad. Sci. USA 113: 3615-3620.
- Yao T, Zhou X, Zhang C, Yu X, Tian Z, Zhang L, et al. 2017. Site-specific PEGylated adeno-associated viruses with increased serum stability and reduced immunogenicity. Molecules 22: 1155.
- Zhang B, Xu H, Chen J, Zheng Y, Wu Y, Si L, et al. 2015. Development of next generation of therapeutic IFN-α2b via genetic code expansion. Acta Biomater. 19: 100-111.
- Wang L, Brock A, Herberich B, Schultz PG. 2001. Expanding the genetic code of Escherichia coli. Science 292: 498-500.
- Davis L, Chin JW. 2012. Designer proteins: applications of genetic code expansion in cell biology. Nat. Rev. Mol. Cell Biol. 13: 168-182.
- Young TS, Ahmad I, Yin JA, Schultz PG. 2010. An enhanced system for unnatural amino acid mutagenesis in E. coli. J. Mol. Biol. 395: 361-374.
- Kim J, Choi J-I. 2022. Expression of green fluorescence proteins with non-canonical amino acids in different Escherichia coli strains.
- Lee D, Kim MK, Choi JI. 2023. Development of orthogonal aminoacyl tRNA synthetase mutant with enhanced incorporation ability with para-azido-L-phenylalanine. Biotechnol. Bioprocess Eng. 28: 398-405.
- Bang HB, Lee YH, Lee YJ, Jeong KJ. 2016. High-level production of human papillomavirus (HPV) type 16 L1 in Escherichia coli. J. Microbiol.Biotechnol. 26: 356-363.
- Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596: 583-589.
- Delano WL. 2002. Pymol: an open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 40: 82-92.
- Wischke C, Borchert HH. 2006. Fluorescein isothiocyanate labelled bovine serum albumin (FITC-BSA) as a model protein drug: opportunities and drawbacks. Pharmazie 61: 770-774.
- Wei M, Wang D, Li Z, Song S, Kong X, Mo X, et al. 2018. N-terminal truncations on L1 proteins of human papillomaviruses promote their soluble expression in Escherichia coli and self-assembly in vitro. Emerg. Microbes Infect. 7: 160.
- Huang X, Wang X, Zhang J, Xia N, Zhao Q. 2017. Escherichia coli-derived virus-like particles in vaccine development. NPJ Vaccines 2: 3.
- Terpe K. 2006. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 72: 211-222.
- Cho HJ, Sun Hahm M, Kuk Kim M, Han IK, Jung WW, Choi HG, et al. 2007. Expression, purification, and antibody binding activity of human papillomavirus 16 L1 protein fused to maltose binding protein. Protein Pept. Lett. 14: 417-424.
- Wang Q, Parrish AR, Wang L. 2009. Expanding the genetic code for biological studies. Chem. Biol. 16: 323-336.
- Liu CC, Schultz PG. 2010. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79: 413-444.
- Lee D, Kim JG, Kim TW, Choi J. 2024. Development of orthogonal aminoacyl-tRNA synthetase mutant for incorporating a non-canonical amino acid. AMB Express 14: 60.
- Wang JW, Roden RB. 2013. Virus-like particles for the prevention of human papillomavirus-associated malignancies. Expert. Rev. Vaccines 12: 129-141.