DOI QR코드

DOI QR Code

Study on Optimization of Liquid Fermentation Medium and Antitumor Activity of the Mycelium on Phyllopora lonicerae

  • Min Liu (Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University) ;
  • Lu Liu (Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University) ;
  • Guoli Zhang (Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University) ;
  • Guangyuan Wang (Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University) ;
  • Ranran Hou (College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University) ;
  • Yinghao Zhang (Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University) ;
  • Xuemei Tian (Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University)
  • Received : 2024.05.08
  • Accepted : 2024.07.22
  • Published : 2024.09.28

Abstract

Phylloporia lonicerae is an annual fungus that specifically parasitizes living Lonicera plants, offering significant potential for developing new resource food and medicine. However, wild resources and mycelium production of this fungus is limited, and its anti-tumor active ingredients and mechanisms remain unclear, hampering the development of this fungus. Thus, we optimized the fermentation medium of P. lonicerae and studied the anti-tumor activity of its mycelium. The results indicated that the optimum fermentation medium consisted of 2% sucrose, 0.2% peptone, 0.1% KH2PO4, 0.05% MgSO4·7H2O, 0.16% Lonicera japonica petals, 0.18% P fungal elicitor, and 0.21% L. japonica stem. The biomass reached 7.82 ± 0.41 g/l after 15 days of cultivation in the optimized medium, a 142% increase compared with the potato dextrose broth medium, with a 64% reduction in cultivation time. The intracellular alcohol extract had a higher inhibitory effect on A549 and Eca-109 cells than the intracellular water extract, with half-maximal inhibitory concentration values of 2.42 and 2.92 mg/ml, respectively. Graded extraction of the alcohol extract yielded petroleum ether phase, chloroform phase, ethyl acetate phase, and n-butanol phase. Among them, the petroleum ether phase exhibited a better effect than the positive control, with a half-maximal inhibitory concentration of 113.3 ㎍/ml. Flow cytometry analysis indicated that petroleum ether components could induce apoptosis of Eca-109 cells, suggesting that this extracted component can be utilized as an anticancer agent in functional foods. This study offers valuable technical support and a theoretical foundation for promoting the comprehensive development and efficient utilization of P. lonicerae.

Keywords

Acknowledgement

This work was supported by Special Foundation for Taishan Scholar of Shandong Province (tsqn202211188), the National Natural Science Foundation of China (31970014).

References

  1. Ren GJ. 2018. Taxonomy and phylogeny of Phylloporia in China. Master.
  2. Zou YY. 2013. Investigation of Macrofungi species resources in Shandong Provinve and pharmacognostical study of Phylloporia Genus. Master.
  3. Jiang JH, Zhou LJ, Liu SL, Zhou LW, Tian XM. 2020. Species clarification of the medicinal wood-inhabiting fungus Phylloporia (Hymenochaetales, Basidiomycota) in China. Phytotaxa 446: 209-219.
  4. Cao CZ, Wang QH, Xu JZ, Bao MY, Cui XJ, Liu YH. 2021. Inhibitory effect and mechanism of Phellinus ribis polysaccharide sulfate PRP-S16 on human umbilical vein endothelial cells EA.hy 926. J. Chinese Med. Mater. 44: 1493-1496.
  5. Dang KY. 2021. Extraction optimization and anti-diabetic activities of polysaccharides from Phylloporia ribis (Schumach:Fr.) Ryvarden. Master.
  6. Liu YH. 2014. Preparation of Phellinus ribis polysaccharide sulfates and their antitumor activity in vitro. Chin. Hosp. Pharm. J. 34: 509-512.
  7. Liu YH, Ma Y, Cai M. 2015. Study on the antitumor activity in vivo of Phellinus ribis polysaccharide. Chin. Hosp. Pharm. J. 34: 124-125.
  8. Liu YH, Zhang WY, Liu YG. 2015. Study on antitumor activity in vivo and mechanisms of Phellinus ribis polysaccharide sulfates. Chin. Hosp. Pharm. J. 35: 985-989.
  9. Yu XL, Bai LJ, Li L, Yao YF, Li Y, Xu JJ, et al. 2020. Chemical constituents from Phylloporia ribis and their in vitro antiviral activities. Chinese Traditional Patent Med. 42: 1777-1781.
  10. Lee IK, Lee JH, Yun BS. 2008. Polychlorinated compounds with PPAR-gamma agonistic effect from the medicinal fungus Phellinus ribis. Bioorg. Med. Chem. Lett. 18: 4566-4568.
  11. Albornoz V, Casas-Arrojo V, Figueroa F, Riquelme C, Hernandez V, Rajchenberg M, et al. 2023. In vitro cytotoxic capacity against tumor cell lines and antioxidant activity of acidic polysaccharides isolated from the Andean Patagonian fungus Phylloporia boldo. Nat. Prod. Res. 37: 4274-4279.
  12. Zhao H, Zhang M, Liu Q, Wang X, Zhao R, Geng Y, et al. 2018. A comprehensive screening shows that ergothioneine is the most abundant antioxidant in the wild macrofungus Phylloporia ribis Ryvarden. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 36: 98-111.
  13. Liu YH, Wang FS. 2010. Effect of PRP polysaccharide of Phyllostemon scirpus on immune function of tumor-bearing mice. Shandong Pharmaceutical Society 2010 Symposium on Biochemical and Biotechnology Drugs, Yantai, Shandong, China.
  14. Bian Z, Cao C, Ding J, Ding L, Yu S, Zhang C, et al. 2023. Neuroprotective effects of PRG on Aβ(25-35)-induced cytotoxicity through activation of the ERK1/2 signaling pathway. J. Ethnopharmacol. 313: 116550.
  15. Liu Y, Liu C, Jiang H, Zhou H, Li P, Wang F. 2015. Isolation, structural characterization and neurotrophic activity of a polysaccharide from Phellinus ribis. Carbohydr. Polym. 127: 145-151.
  16. Li C. 2009. Study on chemical constituents of the fruiting bodies of Phylloporia ribis(Lonicera japonica Thunb.).master.
  17. Fan YO, Cen M, Zhou W, Xu LC, Lu LH. 2013. Current research situation of Phylloporia ribis is and its prospects of application and exploitation. J. Liaoning Univ. Chinese Med. 15: 91-94.
  18. Ceng SH, Zhang F, Li J, Zhang YQ. 2013. tudy on biological characteristics of Phylloporia ribis. Shandong J. Chinese Med. 32: 278-279.
  19. Qin GP. 2011. Studies on the submerged fermentation andquality standard of Phylloporia ribis. Master.
  20. Cheng JW, He L, Hu CJ, Wei HL, Fu LZ, Zou JQ, et al. 2014. Effects of different herbs on submerged fermentation of Phellinus igniarius. Forest By-Product and Speciality in China. 4-6.
  21. Yang HL, Wu TX, Zhang KC. 2003. Effects of extracts of Chinese medicines on Ganoderma lucidum in submerged culture. Acta Microbiol. Sinica 43: 519-522.
  22. Zhong S, Li YG, Zhu JX, Lin TB, Lv ZQ, Ye WQ. 2011. Zhejiang Agricultural Science. 173-175.
  23. Lou H, Li H, Wei T, Chen Q. 2021. Stimulatory effects of oleci acid and fungal elicitor on betulinic acid production by submerged cultivation of medicinal mushroom Inonotus obliquus. J. Fungi 7: 266.
  24. Shen W, Wang D, Wei L, Zhang Y. 2020. Fungal elicitor-induced transcriptional changes of genes related to branched-chain amino acid metabolism in Streptomyces natalensis HW-2. Appl. Microbiol. Biotechnol. 104: 4471-4482.
  25. Zhou L, Fu Y, Zhang X, Wang T, Wang G, Zhou L, et al. 2023. Transcriptome and metabolome integration reveals the impact of fungal elicitors on triterpene accumulation in Sanghuangporus sanghuang. J. Fungi 9: 604.
  26. Zhang GL, Si J, Tian XM, Wang JP. 2017. The effects of fungal elicitor on the accumulation of Sanghuangporus sanghuang intracellular metabolites. Mycosystema 36: 482-491.
  27. Wu BY, Lu B, Yin WX, Xiao WH, Wang W, Yan D, et al. 2024. Optimization of culture conditions and analysis of volatile components of a fragrant Trametes versicolor mycelium. J. Southwest Forestry Unv. 44: 1-8.
  28. Zhang GY, Chen H, Sun WN, Du WJ, Jiang LB, Sang DX, et al. 2024. Optimization of fermentation conditions for γ-aminobutyric acid production by Enterobacterium faecium T2-2 using response surface methodology. China Food Additives 35: 81-90.
  29. Colla LM, Primaz AL, Benedetti S, Loss RA, de Lima M, Reinehr CO, et al. 2016. Surface response methodology for the optimization of lipase production under submerged fermentation by filamentous fungi. Braz. J. Microbiol. 47: 461-467.
  30. Dwibedi V, Rath SK, Prakash R, Saxena S. 2021. Response surface statistical optimization of fermentation parameters for resveratrol production by the endophytic fungus Arcopilus aureus and its tyrosinase inhibitory activity. Biotechnol. Lett. 43: 627-644.
  31. Mahazar NH, Zakuan Z, Norhayati H, MeorHussin AS, Rukayadi Y. 2017. Optimization of Culture Medium for the Growth of Candida sp. and Blastobotrys sp. as starter culture in fermentation of Cocoa beans (Theobroma cacao) using response surface methodolog. Pak. J. Biol. Sci. 20: 154-159.
  32. Miao J, Shi W, Zhang J, Zhang X, Zhang H, Wang Z, et al. 2020. Response surface methodology for the fermentation of polysaccharides from Auricularia auricula using Trichoderma viride and their antioxidant activities. Int. J. Biol. Macromol. 155: 393-402.
  33. Wang J, Tang S, Guo S, Gu D, Wang Y, Tian J, et al. 2023. Fermentation of Agaricus bisporus for antioxidant activity: response surface optimization, chemical components, and mechanism. Prep. Biochem. Biotechnol. 53: 786-796.
  34. Yun TY, Feng RJ, Zhou DB, Pan YY, Chen YF, Wang F, et al. 2018. Optimization of fermentation conditions through response surface methodology for enhanced antibacterial metabolite production by Streptomyces sp. 1-14 from cassava rhizosphere. PLoS One 13: e0206497.
  35. Zhu X. 2021. Real-time monitoring of the temporal distribution and dynamic changes of circulating tumor cells during cancer progression and treatment by in vivo flow cytometry. Doctor.
  36. Darzynkiewicz Z, Bedner E, Smolewski P. 2001. Flow cytometry in analysis of cell cycle and apoptosis. Semin. Hematol. 38: 179-193.
  37. Galbraith D. 2012. Flow cytometry and cell sorting: the next generation. Methods 57: 249-250.
  38. McKinnon KM. 2018. Flow cytometry: An overview. Curr. Protoc. Immunol. 120: 5.1.1-5.1.11.
  39. Montante S, Brinkman RR. 2019. Flow cytometry data analysis: Recent tools and algorithms. Int. J. Lab. Hematol. 41 Suppl 1: 56-62.
  40. Pozarowski P, Darzynkiewicz Z. 2004. Analysis of cell cycle by flow cytometry. Methods Mol. Biol. 281: 301-311.
  41. Reggeti F, Bienzle D. 2011. Flow cytometry in veterinary oncology. Vet. Pathol. 48: 223-235.
  42. Yuan XX, Xu XR, Jiang JX, Wu CQ, Shi ZF. 2023. Research progress of cell proliferation detection assays. J. Southwest Minzu Univ. 49: 616-621.
  43. Hao H. 2023. Screening and evaluation of 5-fluorouracil cocrystals in vitro and in vivo. Doctor.
  44. Catitti G, De Fabritiis S, Brocco D, Simeone P, De Bellis D, Vespa S, et al. 2022. Flow cytometry detection of anthracycline-treated breast cancer cells: An optimized protocol. Curr. Issues Mol. Biol. 45: 164-174.
  45. Zhou LS, Chen TY, Zeng X, Guo XX. 2021. Effects of Lonicera japonica stem aqueous extracton mycelial growth and metabolite productionof Phylloporia ribis in liquid fermentation. Mycosystema 28: 78-85.
  46. Mou YJ, Fang L, Li J, Zhang YQ. 2016. Research progress on chemical constituents and antitumor activities of Phylloporia ribis. China Pharm. 27: 542-544.
  47. Wang KX, Zhang H, Zheng KY, Tian JC, You YY, Sun K, et al. 2009. Cytotoxicity and moleculemechanism of betulinic acid. J. Jilin Univ. 47: 622-627.