DOI QR코드

DOI QR Code

Roles of Endophytic Fungi Isolated from Mangifera indica L. in Promoting Plant Growth

  • Kanyapat Sonsiam (Department of Microbiology, Faculty of Science, Chulalongkorn University) ;
  • Orlavanh Sonesouphap (Department of Microbiology, Faculty of Science, Chulalongkorn University) ;
  • Anyaporn Sangkaew (Department of Microbiology, Faculty of Science, Chulalongkorn University) ;
  • Pariyanuj Chulaka (Department of Horticulture, Faculty of Agriculture, Kasetsart University) ;
  • Prakitsin Sihanonth (Department of Microbiology, Faculty of Science, Chulalongkorn University) ;
  • Chulee Yompakdee (Department of Microbiology, Faculty of Science, Chulalongkorn University)
  • Received : 2024.02.01
  • Accepted : 2024.07.04
  • Published : 2024.09.28

Abstract

Endophytic fungi have been shown to synthesize bioactive secondary metabolites, some of which promote plant growth through various mechanisms. In our previous study, endophytic fungi were isolated from mango trees (Mangifera indica L.). The present study examined fifty endophytic fungal isolates for mineral solubilization activity, ammonia production, and siderophore production. It was shown that these isolates could produce phytohormones indole-3-acetic acid and gibberellic acid, as well as inhibit plant pathogens, specifically Colletotrichum gloeosporioides and Lasiodiplodia theobromae. The results showed that all the isolated fungal endophytes exhibited various activities. Based on the findings, two fungal endophytes-Aureobasidium pullulans CY.OS 13 and Aspergillus tamarii CY.OS 144-were selected for dual inoculation in chili plants under pot-scale conditions to investigate their potential to improve growth-related traits such as seed germination, shoot and root length, biomass, and chlorophyll content. Seed treated with A. pullulans CY.OS 13 and/or A. tamarii CY.OS 144 showed a significant (p < 0.05) increase in seed germination and growth parameters of chili plants grown under pot-scale conditions. Particularly, chili plants whose seeds were injected with a combination of the two selected endophytic fungi showed the highest plant development traits. Therefore, the selected endophytic fungi have the potential to be used as biofertilizers, especially when combined. They could eventually replace chemical fertilizers because they are environmentally friendly, beneficial to humans, and can even promote sustainable agriculture.

Keywords

Acknowledgement

This research was supported by the Chulalongkorn University's Graduate Scholarship Program for ASEAN or Non-ASEAN for OS, the Chulalongkorn University Graduate School Scholarship in Commemoration of the 72nd Anniversary of His Majesty King Bhumibol Adulyadej and the 90th Anniversary of the Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund) for KS.

References

  1. Ferreira CMH, Soares H, Soares EV. 2019. Promising bacterial genera for agricultural practices: an insight on plant growth-promoting properties and microbial safety aspects. Sci. Total Environ. 682: 779-799.
  2. United Nations, Department of Economic and Social Affairs, Population Division. 2019. World Population Prospects 2019: Highlights. Available from https://doi.org/10.18356/13bf5476-en. Accessed June, 2019.
  3. Pathirana R. 2013. Peppers: Vegetable and Spice Capsicums by Paul W. Bosland and Eric J. Votava, pp. 248. 2nd Ed. Crop Production Science in Horticulture, Wallingford.
  4. Petrini O. 1991. Fungal Endophytes of Tree Leaves, pp. 179-197. In Andrews JH, Hirano SS (eds.), Microbial Ecology of Leaves. Brock/Springer Series in Contemporary Bioscience. Springer, New York.
  5. Strobel GA. 2003. Endophytes as sources of bioactive products. Microbes Infect. 5: 535-544.
  6. Strobel G, Daisy B. 2003. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 67: 491-502.
  7. Tan RX, Zou WX. 2001. Endophytes: a rich source of functional metabolites. Nat. Prod. Rep. 18: 448-459.
  8. Verma DP, Yadav AN, Kazy S, Saxena A, Suman A. 2017. Potassium-solubilizing microbes: Diversity, Distribution, and Role in Plant Growth Promotion, pp. 125-149. In Panpatte D, Jhala Y, Vyas R, Shelat H (eds.), Microorganisms for Green Revolution. Springer, Singapore.
  9. Vyas P, Bansal A. 2018. Fungal Endophytes: Role in Sustainable Agriculture, pp. 107-120. In Gehlot P, Singh J (eds.), Fungi and their Role in Sustainable Development: Current Perspectives. Springer, Singapore.
  10. Hirsch J, Marin E, Floriani M, Chiarenza S, Richaud P, Nussaume L, et al. 2006. Phosphate deficiency promotes modification of iron distribution in Arabidopsis plants. Biochimie 88: 1767-1771.
  11. Fan X, Zhou X, Chen H, Tang M, Xie X. 2021. Cross-talks between macro- and micronutrient uptake and signaling in plants. Front. Plant Sci. 12: 663477.
  12. Loria E, Sawyer J. 2005. Extractable soil phosphorus and inorganic nitrogen following application of raw and anaerobically digested swine manure. Agron J. 97: 879-885.
  13. Khan M, Zaidi A, Ahmad E. 2014. Mechanism of Phosphate Solubilization and Physiological Functions of Phosphate-Solubilizing Microorganisms, pp. 31-62. In Khan M, Zaidi A, Musarrat J (eds.), Phosphate Solubilizing Microorganisms: Principles and Application of Microphos Technology. Springer, Cham.
  14. Khan A, Singh P, Srivastava A. 2017. Synthesis, nature and utility of universal iron chelator - siderophore: a review. Microbiol. Res. 212-213: 103-111.
  15. Ghosh S, Banerjee S, Sengupta C. 2017. Bioassay, characterization and estimation of siderophores from some important antagonistic fungi. JBiopest. 10: 105-112.
  16. Burragoni SG, Jeon J. 2021. Applications of endophytic microbes in agriculture, biotechnology, medicine, and beyond. Microbiol. Res. 245: 126691.
  17. Tamariz-Angeles C, Huaman GD, Palacios-Robles E, Olivera-Gonzales P, Castaneda-Barreto A. 2021. Characterization of siderophore-producing microorganisms associated to plants from high-Andean heavy metal polluted soil from Callejon de Huaylas (Ancash, Peru). Microbiol. Res. 250: 126811.
  18. Sundaramoorthy S, Raguchander T, Ragupathi N, Samiyappan R. 2012. Combinatorial effect of endophytic and plant growth promoting rhizobacteria against wilt disease of Capsicum annum L. caused by Fusarium solani. Biol.Control. 60: 59-67.
  19. Sonesouphap O. 2015. Antifungal phytopathogens and phytohormones production activities of endophytic fungi isolated from mango Mangifera indica L plant [MSc thesis]. Chulalongkorn University.
  20. Nautiyal CS. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170: 265-270.
  21. Singh P, Sindhu S. 2013. Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J. Microbiol. 3: 25-31.
  22. Rokhbakhsh-Zamin F, Sachdev D, Kazemi-Pour N, Engineer A, Pardesi KR, Zinjarde S, et al. 2011. Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J. Microbiol. Biotechnol. 21: 556-566.
  23. Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56.
  24. Nutaratat P, Srisuk N, Arunrattiyakorn P, Limtong S. 2014. Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal. Biol. 118: 683-694.
  25. Silkina A, Flynn K, Llewellyn C. 2015. Standard Operating Procedures for Analytical Methods and Data Collection in Support of Pilot-Scale Cultivation of Microalgae, pp.395. In Silkina A, Flynn K, Liewellyn C, Bayliss C (eds.), Public Output report WP1A3.01 of the EnAlgae project. EnAlgae, Swansea University, Centre for Sustainable Aquatic Research Swansea, UK.
  26. Doriya K, Kumar DS. 2016. Isolation and screening of L-asparaginase free of glutaminase and urease from fungal sp. 3 Biotech. 6: 239.
  27. Li GQ, Huang HC, Acharya S. 2003. Antagonism and biocontrol potential of Ulocladium atrum on Sclerotinia sclerotiorum. Biol. Control 28: 11-18.
  28. Rosa-Magri M, Tauk-Tornisielo S, Rampazzo P, Antonini S. 2010. Evaluation of the biological control by the yeast Torulaspora globosa against Colletotrichum sublineolum in sorghum. World J. Microbiol. Biotechnol. 26: 1491-1502.
  29. Islam S, Akanda AM, Prova A, Islam MT, Hossain MM. 2015. Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front Microbiol. 6: 1360.
  30. Zhang Q, Zhang J, Yang L, Zhang L, Jiang D, Chen W, et al. 2014. Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biol. Control 72: 98-108.
  31. Amaresan N, Velusamy J, Kumar K, Thajuddin N. 2011. Isolation and characterization of plant growth promoting endophytic bacteria and their effect on tomato (Lycopersicon esculentum) and chilli (Capsicum annuum) seedling growth. Ann. Microbiol. 62: 805-810.
  32. Lichtenthaler H, Buschmann C. 2001. Chlorophylls and carotenoids - Measurement and characterisation by UV-VIS, pp F4.3.1-F4.3.8. In Wrolstad RE, Acree TE, An H, Decker EA, Penner MH, Reid DS, Schwartz SJ, Shoemaker CF, Sporns P (eds.), Current Protocols in Food Analytical Chemistry. John Wiley and Sons, New York.
  33. Stirling D. 2003. DNA Extraction from fungi, yeast, and bacteria. Methods Mol. Biol. 226: 53-54.
  34. Amberg D, Burke D, Strathern J. 2006. Preparation of Genomic DNA from Yeast Using Glass Beads. Cold Spring Harb. Protoc. 2006: pdb.prot4151.
  35. Ribeiro V, Marriel I, Morais de Sousa S, Lana U, Mattos B, Oliveira C. 2018. Endophytic Bacillus strains enhance pearl millet growth and nutrient uptake under low-P. Braz. J. Microbiol. 49 Suppl 1: 40-46.
  36. Mei C, Chretien R, Amaradasa B, He Y, Turner A, Lowman S. 2021. Characterization of phosphate solubilizing bacterial endophytes and plant growth promotion in vitro and in greenhouse. Microorganisms 9: 1935.
  37. Gateta T, Nacoon S, Seemakram W, Ekprasert J, Theerakulpisut P, Sanitchon J, et al. 2023. The potential of endophytic fungi for enhancing the growth and accumulation of phenolic compounds and anthocyanin in maled phai rice (Oryza sativa L.). J. Fungi (Basel) 9: 937.
  38. Bechtaoui N, Kabiru M, Anas R, Oufdou K, Hafidi M, Jemo M. 2021. Phosphate-dependent regulation of growth and stresses management in plants. Front. Plant Sci. 12: 679916.
  39. Springer, Kooliyottil R, Pandey b, Palni L, Pandey A, Man L, et al. 2012. Utilization of Psychrotolerant Phosphate Solubilizing Fungi Under Low Temperature Conditions of the Mountain Ecosystem, pp. 77-90. In Satyanarayana T, Johri B (eds.), Microorganisms in Sustainable Agriculture and Biotechnology. Springer, Dordrecht.
  40. Rungin S, Indananda C, Suttiviriya P, Kruasuwan W, Jaemsaeng R, Thamchaipenet A. 2012. Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Van Leeuwenhoek 102: 463-472.
  41. Calvente V, Benuzzi D, Tosetti MIS. 1999. Antagonistic action of siderophores from Rhodotorula glutinis upon the postharvest pathogen Penicillium expansum. Int. Biodeterior. Biodegrad. 43: 167-172.
  42. Banik A, Dash GK, Swain P, Kumar U, Mukhopadhyay SK, Dangar TK. 2019. Application of rice (Oryza sativa L.) root endophytic diazotrophic Azotobacter sp. strain Avi2 (MCC 3432) can increase rice yield under green house and field condition. Microbiol. Res. 219: 56-65.
  43. Minaxi, Nain L, Yadav RC, Saxena J. 2012. Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi arid deserts. Appl. Soil Ecol. 59: 124-135.
  44. Hassan S. 2017. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J. Adv. Res. 8: 687-695.
  45. Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee IJ. 2015. Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit. Rev. Biotechnol. 35: 62-74.
  46. Yuan ZL, Zhang C, Lin FC. 2009. Role of diverse non-systemic fungal endophytes in plant performance and response to stress: Progress and approaches. J. Plant Growth Regul. 29: 116-126.
  47. Nath R, Sharma Gd, Barooah M. 2015. Plant growth promoting endophytic fungi isolated from tea (Camellia sinensis) shrubs of Assam, India. Appl. Ecol. Environ. Res. 13: 877-891.
  48. Suryanto D, Bungsu A, Taniwan S, Nurwahyuni I, Pangastuti A. 2017. Application of a single and combination of plant-growth promoting bacteria and actinomycete to increase chili (Capsicum annum L.) health and growth. J. Pure Appl. Microbiol. 11: 1379-1386.
  49. Waqas M, Khan A, Hamayun M, Kamran M, Kang SM, Kim YH, et al. 2012. Assessment of endophytic fungi cultural filtrate on soybean seed germination. Afr. J. Biotechnol. 11: 15135-15143.
  50. Fukami J, Nogueira MA, Araujo RS, Hungria M. 2016. Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express 6: 3.
  51. Jabborova D, Wirth S, Kannepalli A, Narimanov A, Desouky S, Davranov K, et al. 2020. Co-inoculation of rhizobacteria and biochar application improves growth and nutrientsin soybean and enriches soil nutrients and enzymes. Agronomy 10: 1142.
  52. Hajnal-Jafari T, Mirjana J, Djuric S, Stamenov D. 2012. Effect of co-inoculation with different groups of beneficial microorganisms on the microbiological properties of soil and yield of maize (Zea mays L.). Ratar. Povrt. 49: 183-188.
  53. Zhang L, Fan J, Ding X, Zhang F, Feng G. 2014. Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biol. Biochem. 74: 177-183.
  54. Fadda M, Pisano MB, Scaccabarozzi L, Mossa V, Deplano M, Moroni P, et al. 2013. Use of PCR-restriction fragment length polymorphism analysis for identification of yeast species isolated from bovine intramammary infection. J. Dairy Sci. 96: 7692-7697.
  55. Las Heras-Vazquez FJ, Mingorance-Cazorla L, Clemente-Jimenez JM, Rodriguez-Vico F. 2003. Identification of yeast species from orange fruit and juice by RFLP and sequence analysis of the 5.8S rRNA gene and the two internal transcribed spacers. FEMS Yeast Res. 3: 3-9.
  56. Yao L, Lu J, Qu M, Jiang Y, Li F, Guo Y, et al. 2020. Methodology and application of PCR-RFLP for species identification in tuna sashimi. Food Sci. Nutr. 8: 3138-3146.
  57. Rohit A, Maiti B, Shenoy S, Karunasagar I. 2016. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for rapid diagnosis of neonatal sepsis. Indian J. Med. Res. 143: 72-78.