DOI QR코드

DOI QR Code

Developing Strain-Specific Simple Sequence Repeat (SSR) Markers for Chlorella sorokiniana

  • Mais Sweiss (Department of Biotechnology, Faculty of Agricultural Technology, Al-Balqa Applied University) ;
  • Maen Hasan (Department of Plant Production and Protection, Faculty of Agricultural Technology, Al-Balqa Applied University) ;
  • Nidal Odat (Department Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University)
  • Received : 2024.04.16
  • Accepted : 2024.07.05
  • Published : 2024.09.28

Abstract

Chlorella sorokiniana green microalga offers many environmentally friendly applications, including wastewater treatment, biofertilizers, animal feed, and biofuel production. Different strains of C. sorokiniana have unique properties that may suit one application but not another. There is a need to distinguish between the many available strains of C. sorokiniana to choose the one that best fits the application. Consequently, our research goal was to develop strain-specific simple sequence repeat (SSR) markers to differentiate between the different strains. Seventeen markers spanning ten out of the twelve chromosomes of the C. sorokiniana genome were developed and validated on eight different strains from culture collections and our lab, and were then analyzed by fragment analysis. The results demonstrate the potential of these polymorphic markers to detect the genetic differences between the strains of C. sorokiniana, and to serve as useful tools for the intra-species population genetic analysis and conservation genetics studies of C. sorokiniana.

Keywords

Acknowledgement

This research was funded by the Dean of Scientific Research and Innovation at Al-Balqa Applied University in Jordan.

References

  1. Bock C, Krienitz L, Proschold T. 2011. Taxonomic reassessment of the genus Chlorella (Trebouxiophyceae) using molecular signatures (barcodes), including description of seven new species. Fottea 11: 293-312.
  2. Neofotis P, Huang A, Sury K, Chang W, Joseph F, Gabr A, et al. 2016. Characterization and classification of highly productive microalgae strains discovered for biofuel and bioproduct generation. Algal Res. 15: 164-178.
  3. Kumar KS, Dahms H, Won E, Lee J, Shin K. 2015. Microalgae - promising tool for heavy metal remediation. Ecotoxicol. Environ. Saf. 113: 329-352.
  4. Osundeko O, Davies H, Pittman JK. 2013. Oxidative stress-tolerant microalgae strains are highly efficient for biofuel feedstock production on wastewater. Biomass Bioenergy 56: 284-294.
  5. Torres-Tiji Y, Fields FJ, Mayfield SP. 2020. Microalgae as a future food source. Biotechnol. Adv. 41: 107536
  6. Ahmad MT, Shariff M, Md. Yusoff F, Goh YM, Banerjee S. 2020. Applications of microalga Chlorella vulgaris in aquaculture. Rev. Aquac. 12: 328-346.
  7. Darienko T, Gustavs L, Eggert A, Wolf W, Proschold T. 2015. Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLoS One 10: e0127838.
  8. Luo W, Pflugmacher S, Proschold T, Walz N, Krienitz L. 2006. Genotype versus phenotype variability in Chlorella and Micractinium (Chlorophyta, Trebouxiophyceae). Protist 157: 315-333.
  9. Krienitz L, Bock C. 2012. Present state of the systematics of planktonic coccoid green algae of inland waters. Hydrobiologia 698: 295-326.
  10. Proschold T, Leliaert F. 2007. Systematics of the green algae: conflict of classic and modern approaches, pp 123-153, In Brodie J, Lewis J (eds.), Unravelling The Algae: The Past, Present, and Future of Algal Systematics. London, UK: Taylor and Francis, London, UK.
  11. Vieira MLC, Santini L, Diniz AL, Munhoz CDF. 2016. Microsatellite markers: what they mean and why they are so useful. Genet. Mol. Biol. 39: 312-328.
  12. Gemayel R, Cho J, Boeynaems S, Verstrepen KJ. 2012. Beyond junk-variable tandem repeats as facilitators of rapid evolution of regulatory and coding sequences. Genes 3: 461-480.
  13. Jo BH, Lee CS, Song HR, Lee HG, Oh HM. 2014. Development of novel microsatellite markers for strain-specific identification of Chlorella vulgaris. J. Microbiol. Biotechnol. 24: 1189-1195.
  14. Li S, Zhang X, Yin T. 2010. Characteristics of microsatellites in the transcript sequences of the Laccaria bicolor genome. J. Microbiol. Biotechnol. 20: 474-479.
  15. Kim J, Jo BH, Lee KL, Yoon ES, Ryu GH, Chung KW. 2007. Identification of new microsatellite markers in Panax ginseng. Mol. Cells 24: 60-68.
  16. Chambers GK, MacAvoy ES. 2000. Microsatellites: consensus and controversy. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 126: 455-476.
  17. Hovde BT, Hanschen ER, Steadman Tyler CR, Lo CC, Kunde Y, Davenport K, et al. 2018. Genomic characterization reveals significant divergence within Chlorella sorokiniana (Chlorellales, Trebouxiophyceae). Algal Res. 35: 449-461.
  18. Sweiss MA. 2017. Microalgae for wastewater treatment and biomass production from bioprospecting to biotechnology. Ph.D., University of Bath, Bath, UK.
  19. Andersen RA. 2005. Algal Culturing Techniques, pp. 437. Elsevier Academic Press, London, UK.
  20. Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15.
  21. Timmins M, Thomas-Hall SR, Darling A, Zhang E, Hankamer B, Marx UC, et al. 2009. Phylogenetic and molecular analysis of hydrogen-producing green algae. J. Exp. Bot. 60: 1691-1702.
  22. Fama P, Wysor B, Kooistra WHCF, Zuccarello GC. 2002. Molecular phylogeny of the genus Caulerpa (Caulerpales, Chlorophyia) inferred from chloroplast tufA gene. J. Phycol. 38: 1040-1050.
  23. Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schaffer AA. 2008. Database indexing for production MegaBLAST searches. Bioinformatics 24: 1757-1764.
  24. Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7: 203-214.
  25. Tamura K, Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512-526.
  26. Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38: 3022-3027.
  27. Okonechnikov K, Golosova O, Fursov M. 2012. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28: 1166-1167.
  28. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM. 2007. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35: W71-W74.
  29. Dice LR. 1945. Measures of the amount of ecologic association between species. Ecology 26: 297-302.
  30. Leliaert F, Verbruggen H, Vanormelingen P, Steen F, Lopez-Bautista JM, Zuccarello GC, et al. 2014. DNA-based species delimitation in algae. Eur. J. Phycol. 49: 179-196.
  31. Liu J, Chen F. 2016. Biology and industrial applications of Chlorella: advances and prospects, pp.1-35. In Posten C, Chen SF, (eds.), Microalgae Biotechnology, Springer International Publishing Switzerland.
  32. Dorr R, Huss VAR. 1990. Characterization of nuclear DNA in 12 species of Chlorella (chlorococcales, chlorophyta) by DNA reassociation. BioSystems 24: 145-155.
  33. Krasovec M, Sanchez-Brosseau S, Grimsley N, Piganeau G. 2018. Spontaneous mutation rate as a source of diversity for improving desirable traits in cultured microalgae. Algal Res. 35: 85-90.
  34. Wu T, Li L, Jiang X, Yang Y, Song Y, Chen L, et al. 2019. Sequencing and comparative analysis of three Chlorella genomes provide insights into strain-specific adaptation to wastewater. Sci. Rep. 9: 9514.
  35. Nelson DR, Hazzouri KM, Lauersen KJ, Jaiswal A, Chaiboonchoe A, Mystikou A, et al. 2021. Large-scale genome sequencing reveals the driving forces of viruses in microalgal evolution. Cell Host Microbe 29: 250-266.e8.
  36. Sjoqvist CO, Kremp A. 2016. Genetic diversity affects ecological performance and stress response of marine diatom populations. ISME J. 10: 2755-2766.
  37. Varshney P, Beardall J, Bhattacharya S, Wangikar PP. 2018. Isolation and biochemical characterisation of two thermophilic green algal species- Asterarcys quadricellulare and Chlorella sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide. Algal Res. 30: 28-37.
  38. Dasgupta CN, Singh VK, Nayaka S, Kishore S, Lavania S. 2020. Molecular phylogeny of a commercially important thermophilic microalga Chlorella sorokiniana LWG002615 and associated bacterium Aquimonas sp. NBRI01 isolated from Jeori thermal spring, Shimla, India. Nucleus 63: 203-210.
  39. Choi YY, Hong ME, Chang WS, Sim SJ. 2019. Autotrophic biodiesel production from the thermotolerant microalga Chlorella sorokiniana by enhancing the carbon availability with temperature adjustment. Biotechnol. Bioprocess Eng. 24: 223-231.
  40. de-Bashan LE, Trejo A, Huss VAR, Hernandez JP, Bashan Y. 2008. Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-ttolerant microalga with potential for removing ammonium from wastewater. Bioresour. Technol. 99: 4980-4989.
  41. Nair A, Chakraborty S. 2020. Synergistic effects between autotrophy and heterotrophy in optimization of mixotrophic cultivation of Chlorella sorokiniana in bubble-column photobioreactors. Algal Res. 46: 101799.
  42. Kumar K, Banerjee D, Das D. 2014. Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana. Bioresour. Technol. 152: 225-233.
  43. Kobayashi N, Noel EA, Barnes A, Watson A, Rosenberg JN, Erickson G, et al. 2013. Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresour. Technol. 150: 377-386.
  44. Shen S. 2008. Genetic diversity analysis with ISSR PCR on green algae Chlorella vulgaris and Chlorella pyrenoidosa. Chinese J. Oceanol. Limnol. 26: 380-384.
  45. Mostafa N, Omar H, Tan SG, Napis S. 2011. Studies on the genetic variation of the green unicellular alga Haematococcus pluvialis (Chlorophyceae) obtained from different geographical locations using ISSR and RAPD molecular marker. Molecules 16: 2599-2608.
  46. Varela-Alvarez E, Balau AC, Paulino C, Berecibar E, Pearson GA, Serrao EA. 2018. Isolation and characterization of microsatellite markers for the red alga Porphyra umbilicalis. Plant Genet. Resour. Charact. Util. 16: 390-393.
  47. Zhao J, Jiang P, Liu Z, Wang J, Cui Y, Qin S. 2011. Genetic variation of Ulva (Enteromorpha) prolifera (Ulvales, Chlorophyta)-the causative species of the green tides in the Yellow Sea, China. J. Appl. Phycol. 23: 227-233.
  48. Nagai S, Lian C, Yamaguchi S, Hamaguchi M, Matsuyama Y, Itakura S, et al. 2007. Microsatellite markers reveal population genetic structure of the toxic dinoflagellate Alexandrium tamarense (Dinophyceae) in Japanese coastal waters. J. Phycol. 43: 43-54.
  49. Nagai S, Lian C, Hamaguchi M, Matsuyama Y, Itakura S, Hogetsu T. 2004. Development of microsatellite markers in the toxic dinoflagellate Alexandrium tamarense (Dinophyceae). Mol. Ecol. Notes 4: 83-85.
  50. Huang H jia, Gan C qiao, Xiao S wen, Zou C, Balamurugan S, Li H ye, et al. 2020. Genetic diversity of Prorocentrum donghaiense population during bloom in the East China Sea revealed by microsatellite. J. Appl. Phycol. 32: 1851-1862.
  51. Xue S, Xuecheng Z, Yunxiang M, Zhenghong S, Song Q. 2006. Identification of phase and sex-related ISSR markers of red alga Gracilaria lemaneiformis. J. Ocean Univ. China 5: 82-84.
  52. Diaz Martinez S, Boedeker C, Zuccarello GC. 2020. Microsatellite design for species delimitation and insights into ploidy for the Lake Baikal Cladophoraceae species flock. Phycologia 59: 355-364.
  53. Mauger S, Baud A, Le Corguille G, Tanguy G, Legeay E, Creis E, et al. 2023. Genetic resources of macroalgae: development of an efficient method using microsatellite markers in non-model organisms. Algal Res. 75: 103251.
  54. Ren Q, Wang Y chu, Lin Y, Zhen Z, Cui Y, Qin S. 2021. The extremely large chloroplast genome of the green alga Haematococcus pluvialis: genome structure, and comparative analysis. Algal Res. 56: 102308.
  55. Sun X, Zhang X, Mao Y, Liu J, Sui Z, Qin S, et al. 2003. ISSR analysis of marine red algae Gracilaria (Rhodophyceae). High Technol. Lett. 13: 89-93.
  56. Wang X, Zhao F, Hu Z, Critchley AT, Morrell SL, Duan D. 2008. Inter-simple sequence repeat (ISSR) analysis of genetic variation of Chondrus crispus populations from North Atlantic. Aquat. Bot. 88: 154-159.