DOI QR코드

DOI QR Code

Impact of High-Temperature Feeds on Gut Microbiota and MAFLD

  • Lijun Xue (Digestive Department 2, Jinan Central Hospital Affiliated to Shandong First Medical University) ;
  • Kaimin Li (Department of Gastroenterology, China-Japan Friendship Hospital) ;
  • Yanfei Jia (Research Center of Basic Medicine, Jinan Central Hospital) ;
  • Dongxue Yao (Digestive Department 2, Jinan Central Hospital Affiliated to Shandong First Medical University) ;
  • Xuexing Guo (Digestive Department 2, Jinan Central Hospital Affiliated to Shandong First Medical University) ;
  • Shuhong Zhang (Digestive Department 2, Jinan Central Hospital Affiliated to Shandong First Medical University)
  • Received : 2024.05.17
  • Accepted : 2024.07.12
  • Published : 2024.09.28

Abstract

The purpose of this study is to investigate the effects of non-obese MAFLD on the gut microbiota and metabolic pathways caused by high-temperature processed meals. It was decided to divide the eighteen male Sprague-Dawley rats into three groups: the control group, the dry-fried soybeans (DFS) group, and the high-fat diet (HFD) group. Following the passage of twelve weeks, a series of physical, biochemical, histological, and microbiological examinations were carried out. There were distinct pathological abnormalities brought about by each diet. The DFS diet was found to cause the development of fatty liver and to demonstrate strong relationships between components of the gut microbiota, such as Akkermansia and Mucispirillum, and indices of liver health. Diet-induced changes in the gut microbiome have a significant impact on liver pathology in non-obese patients with metabolically altered liver disease (MAFLD), which suggests that dietary interventions that target gut microbiota could be used to manage or prevent the illness.

Keywords

Acknowledgement

This study was supported by the Clinical Medical Science and Technology Innovation Program of Ji Nan science & Technology Bureau (Grant No:202134048) and Jinan Central Hospital introduced talents research project (Grant No: YJRC20210092021).

References

  1. Sharma P, Arora A. 2020. Approach to prevention of non-alcoholic fatty liver disease after liver transplantation. Transl. Gastroenterol. Hepatol. 5: 51
  2. Schnabl B, Brenner DA. 2014. Interactions between the intestinal microbiome and liver diseases. Gastroenterology 146: 1513-1524.
  3. Powell EE, Wong VW, Rinella M. 2021. Non-alcoholic fatty liver disease. Lancet 397: 2212-2224.
  4. Tilg H, Adolph TE, Dudek M, Knolle P. 2021. Non-alcoholic fatty liver disease: the interplay between metabolism, microbes and immunity. Nat. Metab. 3: 1596-1607.
  5. Heeren J, Scheja L. 2021. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol. Metab. 50: 101238.
  6. Gofton C, Upendran Y, Zheng MH, George J. 2023. MAFLD: how is it different from NAFLD?. Clin. Mol. Hepatol. 29(Suppl): S17-S31.
  7. Kawaguchi T, Tsutsumi T, Nakano D, Torimura T. 2022. MAFLD: renovation of clinical practice and disease awareness of fatty liver. Hepatol. Res. 52: 422-432.
  8. Mantovani A, Lombardi R, Cattazzo F, Zusi C, Cappelli D, Dalbeni A. 2022. MAFLD and CKD: an updated narrative review. Int. J. Mol. Sci. 23: 7007
  9. Eslam M, Alkhouri N, Vajro P, Baumann U, Weiss R, Socha P, et al. 2021. Defining paediatric metabolic (dysfunction)-associated fatty liver disease: an international expert consensus statement. Lancet Gastroenterol. Hepatol. 6: 864-873.
  10. De Muynck K, Vanderborght B, Van Vlierberghe H, Devisscher L. 2021. The gut-liver lxis in chronic liver disease: a macrophage perspective. Cells 10: 2959.
  11. Ye C, Kong L, Wang Y, Zheng J, Xu M, Xu Y, et al. 2023. Causal associations of sarcopenia-related traits with cardiometabolic disease and Alzheimer's disease and the mediating role of insulin resistance: a Mendelian randomization study. Aging Cell 22: e13923.
  12. Lazarus JV, Han H, Mark HE, Alqahtani SA, Schattenberg JM, Soriano JB, et al. 2023. The global fatty liver disease sustainable development goal country score for 195 countries and territories. Hepatology 78: 911-928.
  13. Huang CF, Chen GJ, Hung CC, Yu ML. 2023. HCV microelimination for high-risk special populations. J. Infect. Dis. 228(Suppl 3): S168-S179.
  14. Wang H, Brown PC, Chow ECY, Ewart L, Ferguson SS, Fitzpatrick S, et al. 2021. 3D cell culture models: drug pharmacokinetics, safety assessment, and regulatory consideration. Clin. Transl. Sci. 14: 1659-1680.
  15. Jia W, Li Y, Cheung KCP, Zheng X. 2024. Bile acid signaling in the regulation of whole body metabolic and immunological homeostasis. Sci. China Life Sci. 67: 865-878.
  16. Feng L, Zhang W, Shen Q, Miao C, Chen L, Li Y, et al. 2021. Bile acid metabolism dysregulation associates with cancer cachexia: roles of liver and gut microbiome. J. Cachexia Sarcopenia Muscle 12: 1553-1569.
  17. Aller MA, Blanco-Rivero J, Arias N, Santamaria L, Arias J. 2019. The lymphatic headmaster of the mast cell-related splanchnic inflammation in portal hypertension. Cells 8: 658
  18. Kaya E, Yilmaz Y. 2022. Metabolic-associated fatty liver disease (MAFLD): a multi-systemic disease beyond the liver. J. Clin. Transl. Hepatol. 10: 329-338.
  19. Simbrunner B, Caparros E, Neuwirth T, Schwabl P, Konigshofer P, Bauer D, et al. 2023. Bacterial translocation occurs early in cirrhosis and triggers a selective inflammatory response. Hepatol. Int. 17: 1045-1056.
  20. Liu QY, Chen ZM, Li DW, Li AF, Ji Y, Li HY, et al. 2023. Toxicity and potential underlying mechanism of Karenia selliformis to the fish Oryzias melastigma. Aquatic Toxicol. 262: 106643.
  21. Fang J, Yu CH, Li XJ, Yao JM, Fang ZY, Yoon SH, et al. 2022. Gut dysbiosis in nonalcoholic fatty liver disease: pathogenesis, diagnosis, and therapeutic implications. Front. Cell. Infect. Microbiol. 12: 997018.
  22. Tilg H, Adolph TE, Trauner M. 2022. Gut-liver axis: pathophysiological concepts and clinical implications. Cell Metab. 34: 1700-1718.
  23. Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. 2023. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 78: 1966-1986.
  24. Rong L, Zou J, Ran W, Qi X, Chen Y, Cui H, et al. 2023. Advancements in the treatment of non-alcoholic fatty liver disease (NAFLD). Front. Endocrinol. 13: 1087260.
  25. Chanpong A, Borrelli O, Thapar N. 2022. Hirschsprung disease and Paediatric Intestinal Pseudo-obstruction. best practice & research. Clin. Gastroenterol. 56-57: 101765.
  26. Parikh R, Bansal N, Sen R. 2023. Liver histopathology in scope of hematological disorders. Indian J. Pathol. Microbiol. 66: 683-693.
  27. Han SK, Baik SK, Kim MY. 2023. Korean J. Gastroenterol. 82: 213-223.
  28. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al. 2012. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482: 179-185.
  29. Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, et al. 2009. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49: 1877-1887.
  30. Haussinger D, Dhiman RK, Felipo V, Gorg B, Jalan R, Kircheis G, et al. 2022. Hepatic encephalopathy. Nat. Rev. Dis. Primers 8: 43.
  31. Martinez-Medina M, Denizot J, Dreux N, Robin F, Billard E, Bonnet R, et al. 2014. Western diet induces dysbiosis with increased E. coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation. Gut 63: 116-124.
  32. Serino M, Luche E, Gres S, Baylac A, Berge M, Cenac C, et al. 2012. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 61: 543-553.
  33. Nabavi-Rad A, Sadeghi A, Asadzadeh Aghdaei H, Yadegar A, Smith SM, Zali MR. 2022. The double-edged sword of probiotic supplementation on gut microbiota structure in Helicobacter pylori management. Gut Microbes 14: 2108655.
  34. Mayneris-Perxachs J, Cardellini M, Hoyles L, Latorre J, Davato F, Moreno-Navarrete JM, et al. 2021. Iron status influences nonalcoholic fatty liver disease in obesity through the gut microbiome. Microbiome 9: 104.
  35. Ramos Meyers G, Samouda H, Bohn T. 2022. Short chain fatty acid metabolism in relation to gut microbiota and genetic variability. Nutrients 14: 5361.
  36. Xu F, Chen R, Zhang C, Wang H, Ding Z, Yu L, et al. 2023. Cholecystectomy significantly alters gut microbiota homeostasis and metabolic profiles: a cross-sectional study. Nutrients 15: 4399.
  37. Perez R, Figueredo C, Burgos V, Cabrera-Pardo JR, Schmidt B, Heydenreich M, et al. 2023. Natural compounds purified from the leaves of Aristotelia chilensis: makomakinol, a new alkaloid and the effect of aristoteline and hobartine on NaV channels. Int. J. Mol. Sci. 24: 15504.
  38. Yamamura S, Eslam M., Kawaguchi T, Tsutsumi T, Nakano D, Yoshinaga S, et al. 2020. MAFLD identifies patients with significant hepatic fibrosis better than NAFLD. Liver Int. 40: 3018-3030.
  39. Cresci GA, Glueck B, McMullen MR, Xin W, Allende D, Nagy LE. 2017. Prophylactic tributyrin treatment mitigates chronic-binge ethanol-induced intestinal barrier and liver injury. J. Gastroenterol. Hepatol. 32: 1587-1597.
  40. Xu S, Li L, Wu J, An S, Fang H, Han Y, et al. 2021. Melatonin attenuates sepsis-induced small-intestine injury by upregulating SIRT3- mediated oxidative-stress inhibition, mitochondrial protection, and autophagy induction. Front. Immunol. 12: 625627.
  41. Vaghari-Tabari M, Moein S, Alipourian A, Qujeq D, Malakoti F, Alemi F, et al. 2023. Melatonin and inflammatory bowel disease: from basic mechanisms to clinical application. Biochimie 209: 20-36.
  42. Liu Z, Zhao J, Sun R, Wang M, Wang K, Li Y, et al. 2022. Lactobacillus plantarum 23-1 improves intestinal inflammation and barrier function through the TLR4/NF-κB signaling pathway in obese mice. Food Funct. 13: 5971-5986.
  43. Xue LJ, Han JQ, Zhou YC, Peng HY, Yin TF, Li KM, et al. 2020. Untargeted metabolomics characteristics of nonobese nonalcoholic fatty liver disease induced by high-temperature-processed feed in Sprague-Dawley rats. World J. Gastroenterol. 26: 7299-7311.
  44. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. 2005. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41: 1313-1321.
  45. Bedossa P, Poitou C, Veyrie N, Bouillot JL, Basdevant A, Paradis V, et al. 2012. Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients. Hepatology 56: 1751-1759.
  46. Zhang S, Li H, Yuan L, Zhang J, Han L, Liu R, et al. 2020. Molecular characterization of gut microbiota in high-lipid diet-induced hyperlipidemic rats treated with simvastatin. Int. J. Mol. Med. 45: 1601-1615.
  47. Dong LN, Wang M, Guo J, Wang JP. 2019. Role of intestinal microbiota and metabolites in inflammatory bowel disease. Chinese Med. J. 132: 1610-1614.
  48. Basson AR, Chen C, Sagl F, Trotter A, Bederman I, Gomez-Nguyen A, et al. 2021. Regulation of intestinal inflammation by dietary fats. Front. Immunol. 11: 604989.
  49. Li J, Wang T, Liu P, Yang F, Wang X, Zheng W, et al. 2021. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD. Food Funct. 12: 3898-3918.
  50. Sun J, Fan J, Li T, Yan X, Jiang Y. 2022. Nuciferine protects against high-fat diet-induced hepatic steatosis via modulation of gut microbiota and bile acid metabolism in rats. J. Agric. Food Chem. 70: 12014-12028.
  51. Pan Q, Lin S, Li Y, Liu L, Li X, Gao X, et al. 2021. A novel GLP-1 and FGF21 dual agonist has therapeutic potential for diabetes and non-alcoholic steatohepatitis. EBioMedicine 63: 103202.
  52. Thursby E, Juge N. 2017. Introduction to the human gut microbiota. Biochem. J. 474: 1823-1836.
  53. Bell HN, Rebernick RJ, Goyert J, Singhal R, Kuljanin M, Kerk SA., et al. 2022. Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance. Cancer Cell 40: 185-200.e6.
  54. Ouyang ZR, Niu XR, Wang WG, Zhao JH. 2022. The role of short-chain fatty acids in Clostridioides difficile infection: a review. Anaerobe 75: 102585.
  55. Ozen A, Kasap N, Vujkovic-Cvijin I, Apps R, Cheung F, Karakoc-Aydiner E, et al. 2021. Broadly effective metabolic and immune recovery with C5 inhibition in CHAPLE disease. Nat. Immunol. 22: 128-139.
  56. Spanu D, Pretta A, Lai E, Persano M, Donisi C, Mariani S, et al. 2022. Hepatocellular carcinoma and microbiota: implications for clinical management and treatment. World J. Hepatol. 14: 1319-1332.
  57. Boccuto L, Tack J, Ianiro G, Abenavoli L, Scarpellini E. 2023. Human genes involved in the interaction between host and gut microbiome: regulation and pathogenic mechanisms. Genes 14: 857.
  58. Nicoletti A, Ponziani FR, Biolato M, Valenza V, Marrone G, Sganga G, et al. 2019. Intestinal permeability in the pathogenesis of liver damage: from non-alcoholic fatty liver disease to liver transplantation. World J. Gastroenterol. 25: 4814-4834.
  59. Wang J, Chen MS, Wang RS, Hu JQ, Liu S, Wang YY, et al. 2022. Current advances in structure-function relationships and dosedependent effects of human milk oligosaccharides. J. Agric. Food Chem. 70: 6328-6353.
  60. Guo Y, Chen X, Gong P, Li G, Yao W, Yang W. 2023. The gut-organ-axis concept: advances the application of gut-on-chip technology. Int. J Mol. Sci. 24: 4089.
  61. Lee H, Jung KB, Kwon O, Son YS, Choi E, Yu WD, et al. 2022. Limosilactobacillus reuteri DS0384 promotes intestinal epithelial maturation via the postbiotic effect in human intestinal organoids and infant mice. Gut Microbes 14: 2121580.
  62. Li Y, Lee AQ, Lu Z, Sun Y, Lu JW, Ren Z, et al. 2022. Systematic Characterization of the disruption of Intestine during liver tumor progression in the xmrk oncogene transgenic zebrafish model. Cells 11: 1810.
  63. Nishikawa H, Fukunishi S, Asai A, Yokohama K, Ohama H, Nishiguchi S, et al. 2021. Dysbiosis and liver diseases (Review). Int. J. Mol. Med. 48: 183.
  64. Redfern LK, Jayasundara N, Singleton DR, Di Giulio RT, Carlson J, Sumner SJ, et al. 2021. The role of gut microbial community and metabolomic shifts in adaptive resistance of Atlantic killifish (Fundulus heteroclitus) to polycyclic aromatic hydrocarbons. Sci. Total Environ. 776: 145955.
  65. Serek P, and Oleksy-Wawrzyniak M. 2021. The effect of bacterial infections, probiotics and zonulin on intestinal barrier integrity. Int. J. Mol. Sci. 22: 11359.
  66. Luchan J, Choi C, Carrier RL. 2021. Reactive oxygen species limit intestinal mucosa-bacteria homeostasis in vitro. Sci. Rep. 11: 23727.
  67. Cani PD, Osto M, Geurts L, Everard A. 2012. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3: 279-288.
  68. Cani PD, Depommier C, Derrien M, Everard A, de Vos WM. 2022. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat. Rev. Gastroenterol. Hepatol. 19: 625-637.
  69. Chen B, Sun L, Zeng G, Shen Z, Wang K, Yin L, et al. 2022. Gut bacteria alleviate smoking-related NASH by degrading gut nicotine. Nature 610: 562-568.
  70. Bertocchi A, Carloni S, Ravenda PS, Bertalot G, Spadoni I, Lo Cascio A, et al. 2021. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver. Cancer Cell 39: 708-724.e11.
  71. Kasai C, Sugimoto K, Moritani I, Tanaka J, Oya Y, Inoue H, et al. 2015. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and nextgeneration sequencing. BMC Gastroenterol. 15: 100.
  72. Indiani CMDSP, Rizzardi KF, Castelo PM, Ferraz LFC, Darrieux M, Parisotto TM. 2018. Childhood obesity and firmicutes/ bacteroidetes ratio in the gut microbiota: a systematic review. Child. Obes. 14: 501-509.
  73. Shikh EV, Nikolaeva NB, Molchanova NB, Elizarova EV. 2023. Correction of gut dysbiosis as a promising direction in the prevention of neuroinflammation and cognitive impairment. Vopr. Pitan. 92: 107-119.
  74. Cho HS, Choi M, Lee Y, Jeon H, Ahn B, Soundrarajan N, et al. 2021. High-quality nucleic acid isolation from hard-to-lyse bacterial strains using PMAP-36, a broad-spectrum antimicrobial peptide. Int. J. Mol. Sci. 22: 4149.
  75. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 110: 9066-9071.
  76. Ai ZL, Zhang X, Ge W, Zhong YB, Wang HY, Zuo ZY, et al. 2022. Salvia miltiorrhiza extract may exert an anti-obesity effect in rats with high-fat diet-induced obesity by modulating gut microbiome and lipid metabolism. World J. Gastroenterol. 28: 6131-6156.
  77. Li L, Ma C, Hurilebagen, Yuan H, Hu R, Wang W, et al. 2022. Effects of lactoferrin on intestinal flora of metabolic disorder mice. BMC Microbiol. 22: 181.
  78. Del Chierico F, Nobili V, Vernocchi P, Russo A, De Stefanis C, Gnani D, et al. 2017. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology 65: 451-464.
  79. Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, et al. 2016. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 63: 764-775.
  80. Yang M, Wang H, Bukhari I, Zhao Y, Huang H, Yu Y, et al. 2023. Effects of cholesterol-lowering probiotics on non-alcoholic fatty liver disease in FXR gene knockout mice. Front. Nutr. 10: 1121203.
  81. Henneke L, Schlicht K, Andreani NA, Hollstein T, Demetrowitsch T, Knappe C, et al. 2022. A dietary carbohydrate - gut Parasutterella - human fatty acid biosynthesis metabolic axis in obesity and type 2 diabetes. Gut Microbes 14: 2057778.
  82. Yang DF, Huang WC, Wu CW, Huang CY, Yang YSH, Tung YT. 2023. Acute sleep deprivation exacerbates systemic inflammation and psychiatry disorders through gut microbiota dysbiosis and disruption of circadian rhythms. Microbiol. Res. 268: 127292.
  83. Oba PM, Kelly J, Kostiuk D, Swanson KS. 2023. Effects of weight loss and feeding specially formulated diets on the body composition, blood metabolite profiles, voluntary physical activity, and fecal metabolites and microbiota of obese dogs. J. Anim. Sci. 101: skad073.
  84. Shi L, Li Y, Liu Y, Jia H. 2022. Alterations of gut microbiota and cytokines in elevated serum diamine oxidase disorder. Medicine 101: e31966.