
J. lnf. Commun. Converg. Eng. 22(3): 215-220, Sep. 2024 Regular paper

215

Received 28 May 2023, Revised 5 October 2023, Accepted 14 October 2023
*Corresponding Author Byungyeon Hwang (E-mail: byhwang@catholic.ac.kr, Tel: +82-2-2164-4363)
School of Computer Science and Information Engineering, the Catholic University of Korea, Bucheon 14662, Republic of Korea

https://doi.org/10.56977/jicce.2024.22.3.215 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

Optimal Terminal Interconnections Using Minimum Cost
Spanning Tree of Randomly Divided Planes

Minkwon Kim , Yeonsoo Kim , Hanna Kim , and Byungyeon Hwang* , Member, KIICE

School of Computer Science and Information Engineering, the Catholic University of Korea, Bucheon 14662, Republic of Korea

Abstract

This paper presents an efficient method for expanding interconnections in scenarios involving the reconstruction of

interconnections across arbitrarily divided planes. Conventionally, such situations necessitate rebuilding interconnections based

on all targets, ensuring minimal cost but incurring substantial time expenditure. In this paper, we present a tinkered tree

algorithm designed to efficiently expand interconnections within a Euclidean plane divided into m randomly generated regions.

The primary objective of this algorithm is to construct an optimal tree by utilizing the minimum spanning tree (MST) of each

region, resulting in swift interconnection expansion. Interconnection construction is applied in various design fields. Notably, in

the context of ad hoc networks, which lack a fixed-wired infrastructure and communicate solely with mobile hosts, the heuristic

proposed in this paper is anticipated to significantly reduce costs while establishing rapid interconnections in scenarios

involving expanded connection targets.

Index Terms: Interconnection graph problem, Minimum cost spanning tree, Prim’s algorithm, Tinkered tree

I. INTRODUCTION

Interconnection construction is an abstract problem in vari-

ous industries, from networks to architecture [1-4]. The mini-

mum spanning tree (MST) algorithm can be employed to

connect all objects with the minimum length during intercon-

nection construction [5,6]. If the target of the interconnection

is expanded, it is necessary to reconstruct the inter-connection

using the MST algorithm, which is time-consuming.

In this study, we address the scenario in which the intercon-

nection target expands and the newly added components

establish an MST within each subdivided plane. By leveraging

this information, we present a heuristic approach that achieves

faster terminal connections than the MST algorithm. The heu-

ristic generates an optimal tree, referred to as the tinkered tree,

which bears a resemblance to MST. In practical applications,

this study can be employed to effectively construct a network

service that supports the entire R2 based on the existing m

network services that operate locally within a wide area R2.

Furthermore, an efficient connected dominating set (CDS)

configuration of a wireless ad hoc network consisting only of

mobile hosts, without establishing a fixed wired network, can

be expected [7-10]. In the following section, research related

to this study is presented. In Section 3, we explain the heuris-

tic proposed in this paper, and Section 4 proves the usefulness

of the heuristic proposed in this paper through experiments. In

Section 5, we describe the conclusions of this study.

II. RELATED WORKS

An important component of a computer system is its inter-

connected network. Several problems related to intercon-

nected networks have been identified. Tripathy et al. [3]

https://orcid.org/0000-0001-5444-7463
https://orcid.org/0009-0008-0883-2887
https://orcid.org/0000-0001-5444-7463
https://orcid.org/0000-0002-5015-3967

J. lnf. Commun. Converg. Eng. 22(3): 215-220, Sep. 2024

https://doi.org/10.56977/jicce.2024.22.3.215 216

presented a genetic algorithm-based approach for solving the

topology optimization problem of interconnection networks

to optimize terminal reliability under predefined cost con-

straints. This approach is different from the heuristic used in

this study, which uses existing interconnections to shorten

the execution time and bring the cost closer to the optimum

value. Kim et al. [4] considered the construction of a maxi-

mum interconnection modeled as a complete graph by set-

ting the connection target as a terminal on the Euclidean

plane and the connection cost of each edge as the distance

between the terminals. When the number of objects to be

connected is not fixed and not all objects of a given length

can be interconnected, the problem of constructing a maxi-

mum interconnection is proven to be NP-hard, and a heuris-

tic for constructing an efficient interconnection using a

memetic genetic algorithm is proposed. Although it is com-

mon to address optimal interconnection with a planar con-

nection target, the approach introduced by Kim et al. [4]

differs in that a limit is imposed on the maximum length that

can be connected. Wieselthier et al. [5] proposed a minimum

energy broadcast problem that minimizes the total transmis-

sion energy required to broadcast messages from one node to

all nodes within a network. In practical applications, these

interconnections are constantly changing, and the cost of

rebuilding them can be substantial. Therefore, we propose a

tinkered tree that rapidly establishes interconnections between

these ever-changing interconnections, while preserving the

initially established connections, as part of our related work.

III. HEURISTIC OF THIS PROBLEM

A. Preprocessing

To validate the effectiveness of this study, it was essential

to develop a benchmark model that could be used for com-

parison with the results of this research. We employed the

MST with the lowest cost encompassing all terminals as a

reference point to demonstrate the advantages of our find-

ings. After constructing an MST involving all terminal sets

using Prim’s algorithm, the resulting information was pre-

served. After constructing the MST based on the terminal

subset in each partition, the information on the length and

time used to construct the corresponding MST was stored.

B. Distance of each Partition

Definition 3-1. A portal is located on the boundary

between a partition and an adjacent partition, and is a

benchmark used to find the closest pair connecting the two

partitions.

Lemma 3-1-1 When two partitions Pa and Pb exist, a total

of i portals are evenly distributed as {Portal1, Portal2, …,

Portal i} on the line dividing the partition. The number of

portals, i, is determined in a later experiment.

To create an optimal tree similar to the MST without gener-

ating it for the entire set of terminals, it is necessary to iden-

tify the closest pair for connecting each partition with its

adjacent partition. In this study, we employed the portal

method as an effective approach to identify the closest pairs.

Based on Portal i, terminal Tai closest to Pa and terminal Tbi

closest to Pb were found. The portal distance for Portal i is

calculated as distance (Tai, Portal i) + distance (Tbi, Portal i).

Accordingly, the portal with the shortest distance was selected.

Fig. 1 shows an example of the selected portal and its path.

In this case, the portal distance was calculated to be

greater than or equal to the closest pair distance. Conse-

quently, after identifying the closest pair for each partition

using the portal method, the distance between the partitions

was determined as the closest pair distance (Tai, Tbi).

Theorem 3-1. Portal distance (Distance (Tai, Portal i) +

Distance (Tbi, Portal i)) uses a length that is greater than or

equal to the closest pair distance (Tai, Tbi).

Proof. The portal distance, which is a connection through

a portal, consumes more cost than the closest pair distance,

which is a connection that does not go through a portal. i.e.,

Distance (Tai, Portal i) + Distance (Tbi, Portal i) < Distance

(Tai, Tbi). However, if there is a portal at the intersection of

the boundary line dividing Pa and Pb and the line connect-

ing Tai and Tbi, the distance is the same as Distance (Tai,

Portal i) + Distance (Tbi, Portal i) = Distance (Tai, Tbi).

Therefore, Distance (Tai, Portal i) + Distance (Tbi, Portal i)

≤Distance (Tai, Tbi).

Fig. 2 shows the pseudocode for finding the closest pair

using a portal and determining the distance between partitions.

Fig. 1. Example of selected portal and path

Optimal Terminal Interconnections Using Minimum Cost Spanning Tree of Randomly Divided Planes

217 http://jicce.org

C. Tinkered Tree Heuristic

There are m partition sets, denoted by P = {P1, P2, …,

Pm}, with the MST information of each terminal subset

stored within every partition. Let the length of the terminal

subset MST for Partition Pi be denoted by length (Pi). In the

previous section, the shortest distance between all the parti-

tions was determined using the closest pair algorithm

through the portal. The heuristic approach introduced in this

study, known as the tinkered tree, treats the MST of each

partition as an individual component. A tinkered tree was

then constructed by connecting these components based on

the shortest distance between the closest pairs. Fig. 3 shows

the progress of the tinkered tree heuristic when the number

of partitions was three.

In Fig. 3, the closest pair of Partition0 and Partition1 is

terminals a and c, the closest pair of Partition0 and Parti-

tion2 is terminals b and e, and the closest pair of Partition1

and Partition2 is terminals d and f. Currently, if the MST is

generated by the distance between partitions using each clos-

est pair, d and f, which have the longest distance, are not

connected, and all partitions are connected by the connection

between a and c and the connection between b and e. In this

way, the tinkered tree uses the closest pair between the parti-

tions to create an MST that connects the three partitions,

effectively constructing an interconnection without damaging

the existing terminal subsets.

IV. EXPERIMENTS

A. Create Instance and Benchmark Model

This method was used to create the necessary variables

(Portal, Partition, and Terminal) for the study. The instance

in this study is not just a method of arranging uniform termi-

nals in the partition on the Euclidean plane, but is designed

for an instance that is more suitable for practical applica-

tions. Therefore, the instance was self-made, and the self-

made instance settings were as follows: (1) given in 100000

× 100000 Euclidean plane; (2) Portals are located at the

Fig. 2. Pseudocode to obtain the distance between partitions using
a portal

Fig. 3. Tinkered tree heuristic

J. lnf. Commun. Converg. Eng. 22(3): 215-220, Sep. 2024

https://doi.org/10.56977/jicce.2024.22.3.215 218

boundary of the partition and distributed at equal intervals

according to the number; (3) Partitions are given in the form

of an initial Hanan grid and are created as unequal partitions

through merge [11]; (4) The coordinates of each terminal are

rounded to two decimal places; (5) The number of terminals

in the partition was distributed as evenly as possible, and if

the partition and the terminal were not divided, they were

randomly generated. The heuristic presented in this paper

aims to efficiently link all provided terminals using the shortest

feasible distance. A criterion was required to assess the

effectiveness of the heuristic. The task of connecting all ter-

minals with the least possible length can be addressed using

the MST algorithm. Therefore, using Prim’s algorithm as a

control, the ratio of execution time to the total length of con-

nections used by Prim’s algorithm was compared with that of

the proposed heuristics.

B. Environment for Experiments

The implementation environment for the experiment was

the same as that in [4], and the heuristic proposed in this

study was written in Java. The heuristic demonstrates varia-

tions in performance based on the number of portals, parti-

tions, and terminals. Consequently, it is essential to determine

the optimal values of these three variables to achieve the

most favorable outcomes in the final experimental results. In

the experiment, for each variable, the time and length of the

heuristic were expressed as a ratio compared with the bench-

mark model according to the variable value, and the optimal

value was determined among the values. To determine the

number of portals, the numbers were compared by conduct-

ing an experiment on cases in which the number of portals

ranged from 1 to 1,000. The experimental result for the num-

ber of portals in each case was the average of the time and

length of the number of portals after 10 experiments for dif-

ferent inputs. Fig. 4 shows a graph of the time and length for

interconnection according to the number of portals in the

heuristic proposed in this study.

As shown in Fig. 4, as the number of portals increased, the

time increased, and the length gradually decreased, converg-

ing to approximately 102.04%. Therefore, when the number

of portals was 50, it was judged that most of them con-

verged; in the final experiment, the number of portals was

fixed at 50, and the experiment was carried out. To deter-

mine the optimal number of partitions, the numbers were

compared across cases ranging from 11 to 5,010 partitions.

Similar to the experiment used to determine the number of

portals, the experimental result for each case was the average

of the time and length of the number of partitions after 10

experiments for different inputs. Fig. 5 shows a graph of the

time and length for interconnection according to the number

of partitions in the heuristic proposed in this study.

Therefore, in the final experiment, the number of parti-

tions was fixed to 110, and the experiment was carried out.

To establish the appropriate number of terminals for the final

experiment, we conducted trials spanning terminal counts

ranging from 10,000 to 500,000. The experimental results

for each case were obtained by averaging the time and length

of the number of terminals through 10 experiments using

different inputs. Fig. 6 shows a graph of the time and length

Fig. 4. Results according to the number of portals

Fig. 5. Results according to the number of partitions

Fig. 6. Results according to the number of terminals

Optimal Terminal Interconnections Using Minimum Cost Spanning Tree of Randomly Divided Planes

219 http://jicce.org

for interconnection according to the number of terminals in

the heuristic proposed in this study. As shown in Fig. 6, as

the number of terminals within all partitions increased, the

time and length decreased. The time and length decreased

rapidly when the number of terminals was 100,000. There-

fore, in the final experiment, the number of terminals within

all partitions was fixed to 100,000, and the experiment was

carried out.

D. Performance Comparison

In the previous experiment, the optimal values of the three

variables—Portal, Partition, and Terminal—were determined

and selected to yield favorable outcomes in the final experi-

ment. In this experiment, we aimed to determine how good

the values were compared with the benchmark model when

the determined values were applied. The test result was the

average value obtained in the same manner with 10 different

inputs. Fig. 7 shows a graph comparing the time of the tin-

kered tree proposed in this study with the benchmark model

as a ratio, and Fig. 8 shows a graph comparing the length of

the benchmark model with that of the tinkered tree proposed

in this paper as a ratio.

As shown in Fig. 7, the tinkered tree proposed in this

study exhibits a time reduction of 99.4% compared with the

benchmark model. As shown in Fig. 8, the tinkered tree pro-

posed in this study exhibits an increase in length of 2.0%

compared with the benchmark model. In other words, the

results show that the tinkered tree proposed in this study

works efficiently by shortening the execution time to 99.4%

instead of increasing the length by 2.0% compared with the

benchmark model.

V. CONCLUSIONS

In this study, we introduced a heuristic tinkered tree that

efficiently establishes interconnections using a given MST of

partitions randomly divided across the Euclidean plane. This

approach eliminates the need to reconstruct the MST for the

entire plane while effectively utilizing the information pro-

vided. Although this problem does not guarantee minimum

cost, as in the MST algorithm, it can be expected to perform

well in ad hoc networks where dynamic changes in the net-

work topology make it difficult to maintain paths. Addition-

ally, one can expect an effect when combining raw data from

the online store with data computed from the offline store

within a big data platform. As a prospective research avenue,

we propose a methodology that is applicable across diverse

domains. This entails extending the problem to scenarios where

factors such as the distribution of terminals within partitions

or alterations in partition coordinates come into play.

REFERENCES

[1] K. Zhou and J. Chen, “Simulation DNA algorithm of set covering

problem,” Applied Mathematics & Information Sciences, vol. 8, pp.

139-144, Jan. 2014. DOI: 10.12785/amis/080117.

[2] A. Mariano, D. Lee, A. Gerstlauer, and D. Chiou, “Hardware and

software implementations of Prim’s algorithm for efficient minimum

spanning tree computation,” in International Embedded Systems

Symposium, Berlin, Germany, pp. 151-158, 2013. DOI: 10.1007/978-

3-642-38853-8_14.

[3] P. Tripathy, R. K. Dash, and C. R. Tripathy, “A genetic algorithm

based approach for topological optimization of interconnection

networks,” Procedia Technology, vol. 6, pp. 196-205, Nov. 2012.

DOI: 10.1016/j.protcy.2012.10.024.

[4] J. Kim, J. Oh, M. Kim, Y. Kim, J. Lee, S. Han, and B. Hwang,

“Maximum node interconnection by a given sum of Euclidean edge

lengths,” Journal of Information and Communication Convergence

Engineering, vol. 17, no. 4, pp. 246-254, Dec. 2019. DOI: 10.6109/

jicce.2019.17.4.1.

[5] J. E. Wieselthier, G. D. Nguyen, A. Ephremides, “On the

construction of energy-efficient broadcast and multicast trees in

wireless networks,” in Proceeding of IEEE Infocom 2000, Tel Aviv,

IL, pp. 585-594, 2000. DOI: 10.1109/INFCOM.2000.832232.

[6] D. Hu, P. Dai, K. Zhou, and S. Ge, “Improved particle swarm

optimization for minimum spanning tree of length constraint

problem,” in Proceeding of International Conference on Intelligent

Computation Technology and Automation, Nanchang, CN, pp. 474-

477, 2015. DOI: 10.1109/icicta.2015.124.

[7] C. E. Perkins, “Ad hoc networking in the IETF,” in IEEE

International Workshop on Broadband Convergence Networks,

Vancouver, CA, 2006. DOI: 10.1109/BCN.2006.1662294.

[8] S. Ren, P. Yi, D. Hong, Y. Wu, and T. Zhu, “Distributed construction

Fig. 7. Runtime of each heuristic

Fig. 8. Length of each heuristic

J. lnf. Commun. Converg. Eng. 22(3): 215-220, Sep. 2024

https://doi.org/10.56977/jicce.2024.22.3.215 220

of connected dominating sets optimized by minimum-weight

spanning tree in wireless ad-hoc sensor networks,” in IEEE 17th

International Conference on Computational Science and Engineering,

Chengdu, CN, pp. 901-908, 2014, DOI: 10.1109/cse.2014.183.

[9] X. Zhang and X. Zhang, “A binary artificial bee colony algorithm for

constructing spanning trees in vehicular ad hoc networks” Ad Hoc

Networks, vol. 58, pp. 198-204, Apr. 2017. DOI: 10.1016/

j.adhoc.2016.07.001.

[10] J. J. Kponyo, Y. Kuang, E. Zhang, and K. Domenic, “VANET

cluster-on-demand minimum spanning tree (MST) prim clustering

algorithm,” in International Conference on Computational Problem-

Solving, Jiuzhai, CN, 2013. DOI: 10.1109/ICCPS.2013.6893585.

[11] M. Hanan, “On Steiner’s problem with rectilinear distance,” SIAM

Journal of Applied Mathematics, vol. 14, no. 2, pp. 255-265, Mar.

1966. DOI: 10.1137/0114025.

Minkwon Kim
received his B.S. degree in computer science and information engineering from the Catholic University of Korea in 2021. His

research interests include database and algorithm.

Yeonsoo Kim
received his B.S. degree in computer science and information engineering from the Catholic University of Korea in 2021. His

research interests include database and algorithm.

Hanna Kim
is an undergraduate majoring in computer science and information engineering at the Catholic University of Korea since

2017. Her research interests include database and algorithm.

Byungyeon Hwang
received his B.S. degree in computer engineering from Seoul National University, Republic of Korea in 1986, and MS and

PhD degrees in computer science from Korea Advanced Institute of Science and Technology (KAIST) in 1989 and 1994,

respectively. He is a professor in the School of Computer Science and Information Engineering at the Catholic University of

Korea. His research interests include database, social network analysis, and approximation algorithms.

