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Abstract

The network security of Plug-and-Charge (PnC) technology in electric vehicle charging systems is typically achieved through

the well-known Transport Layer Security (TLS) protocol, which causes high communication overhead. To reduce this overhead,

a differential authentication method employing different schemes for individual users has been proposed. However, decisions

use a simple threshold approach and no quantitative performance evaluation should be made. In this study, we determined each

user’s trust using several machine learning algorithms with their charging patterns and compared them. The experimental results

reveal that the proposed approach outperforms the conventional approach by 41.36% in terms of round-trip time efficiency,

demonstrating its effectiveness in reducing the TLS overhead. In addition, we show the simulation results for three user

authentication methods and capture the performance variations under CPU busy waiting scenarios.

Index Terms: Differential authentication, Data-driven, Electric vehicle charging patterns, Machine learning

I. INTRODUCTION

With the increasing demand for Electric Vehicles (EV) and

Charging Stations (CS), ISO/IEC 15118, a worldwide com-

munication standard, is proposed to facilitate seamless charging

and improve interoperability between EVs and CSs. Specifi-

cally, ISO 15118 Part 2 [1] incorporates Plug-and-Charge

(PnC) technology to automatically authenticate customers

visiting a CS while charging an EV.

Once the charger is connected to the EV, the PnC technol-

ogy described in ISO 15118 Part 2 supports all authentica-

tion processes, billing information (i.e., payment rates), and

controls information exchange over the CS communication

network. Transport Layer Security (TLS)-based public key

infrastructure authentication is employed to provide secure

activities for EV users during PnC activities. However, TLS

authentication methods incur additional communication costs

and expose certificate validation issues over time [2]. To

overcome this issue, previous studies on reducing the over-

head of TLS authentication have mainly focused on two

methods: lightweight TLS and differential authentication.

The lightweight TLS concept is described in [3,4]. iTLS [3]

is a lightweight TLS protocol for Internet of Things (IoT)

devices. This protocol allows clients to transmit encrypted

data without additional handshaking by dynamically generat-

ing an identity authentication key for initial authentication

before receiving a server response. The iTLS is suitable for

IoT environments that require low power owing to the reduced

network traffic overhead and handshaking latency compared

with TLS. Another extension of the iTLS was proposed in [4]

by analyzing security vulnerabilities using an Open-source

Fixed-point Model Checker. The Zero Round-Trip Time (0-

RTT) mode was applied to reduce the bandwidth overhead by

193 bytes, making it suitable for IoT. However, because of the

lack of dependency on power constraints such as IoT, a differ-

ent lightweight approach is required for EV charging systems.
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To address the TLS lightweight, as a second approach, dif-

ferential authentication based on user trust has been pro-

posed by our research group in [5]. In our previous work, we

evaluated the trust of EV users and reduced the communica-

tion overhead for user authentication between the CS and

server by applying a simpler authentication method than

TLS. Trusted users are authenticated using a simpler method

than existing TLS authentication methods, such as Open

Authorization (OAuth) [6] and One-Time Password (OTP).

EV-Auth [7] is not considered when reducing the overhead

associated with TLS authentication. Therefore, we chose OTP

as a simple authentication method. This approach contributes

to reducing the communication overhead. However, previous

studies have simply made decisions regarding user evalua-

tions using arithmetic and numerical approaches. Moreover,

no performance evaluation was conducted. Therefore, it is

necessary to replace the threshold-based scheme as well as

provide performance evaluation. For this purpose, we intro-

duced machine learning schemes for user evaluation using

user data. In particular, we focus on user-charging patterns,

which have been extensively studied.

Previous studies that utilized user-charging patterns were

categorized into classifying user groups and deriving charging

patterns. In [8-10], EV users were categorized based on their

charging behaviors, preferred locations, and charger types. In

[8], Dutch EV users were clustered into daytime and night-

time charging types. [9] classified Korean electric vehicle

users based on charging stations and charger types, and iden-

tified their charging habits. [10] studied California plug-in

electric vehicle users and differentiated their charging behav-

ior based on charger type and location. These studies used

regular charging times, charger types, and charging details to

classify users and suggested that users prefer specific loca-

tions and charger types. In [11-15], machine learning was

used for the predictive modeling of EV charging behavior.

Several predictive modeling and machine learning tech-

niques have been proposed to analyze and recommend cur-

rent and future EV charging infrastructures. These models

include power demand prediction, charging demand predic-

tion, and diverse charging-pattern analyses.

Despite previous studies on user-charging patterns, none

have explored the use of these data to evaluate trust in user

authentication. Although previous studies have focused on

predicting charging demand and efficient energy manage-

ment, this study aims to explore a new approach for evaluat-

ing trust to reduce the overhead of TLS authentication by

reducing the number of TLS user authentications.

The remainder of this paper is organized as follows. Sec-

tion II summarizes previous studies on EV user-charging

patterns and describes machine learning approaches. Section

III describes the simulation settings used in this study and

the performance metrics for each scenario. Section IV sum-

marizes our findings and suggests avenues for future research.

II. DIFFERENTIAL AUTHENTICATION SCHEME 

THROUGH ML APPROACHES

In the previous section, various studies that used EV

charging patterns were described. In this section, we analyze

the algorithms proposed in existing studies and propose an

improved trust-evaluation algorithm by extending the study

by adding threshold settings through machine learning using

user-charging data.

A. Previous Numeric-based Differential Authentica-
tion

A trust evaluation of both charging stations and users was

performed using a previously proposed algorithm [5]. This

section focuses on the CS and user trust evaluation parame-

ters outlined in Table 1.

1) CS trust-evaluation parameters

For the trust-evaluation items of the charging station, we

checked and compared the number of incorrect payments

made at the charging station using a directly set threshold. If

it is higher than the threshold, we evaluate it as having low

trust. If it is lower than the threshold, we evaluate it as hav-

ing high trust. First, if trust in the charging station visited by

the user is high, the user’s trust-evaluation algorithm is exe-

cuted. The payment error rate of the CSi is used as a trust-

evaluation item, as expressed in (1).

payment_error_rate_CSi = (1)

The payment error rate of the charging station is used as a

trust-evaluation item for the charging station, and the calcu-

lation method is as follows: First, find the sum of i datasets

from 1 to N, Si is the i-th payment status of the i-th CS and

is 0 (abnormal) and Si is 1 (normal). Calculate 1-Si and in

i 1=

N
1 Si– 

N
----------------------------

Table 1. List of symbols

Symbol Description

i CS index

j User index

CSi The i-th CS (i.e., evaluation target)

Si Payment error rate vector of CSi

Pi Charging-power rate vector of CSi

Uj The j-th EV user (i.e., evaluation target)

Tij Charging time vector of Uj for CSi

Pij Charging-power rate vector of Uj for CSi

Sij Payment error rate vector of Uj for CSi

Tij Average charging time of Uj for CSi

Pij Average charging-power rate of Uj for CSi

Sij Average payment error rate of Uj for CSi
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the case of payment errors, 1 can be obtained. The sum of

the abnormal payment states for all datasets is then divided

by the total number of datasets to calculate the average pay-

ment error rate of the CS. By comparing the payment error

rate to a numerical threshold, user trust is evaluated only if it

is below the threshold.

2) User trust-evaluation parameters

To evaluate user trust, Pij, Tij and Sij are used. First, the

user’s charging frequency uses the charging date of charging

station Ci to check the gap between the visit date and the

next visit date, and calculates it as an average value. Next,

we calculate the user’s average payment error rate using (1).

The calculation method for the user’s average charging-

power rate is shown in (2).

(2)

N refers to the total data size and Pij refers to the j-th

charging amount. The value calculated in this way is substi-

tuted into Pij, which means the average charge amount and

the corresponding value is calculated with the weight value

ω to determine whether it is located in the center:

① Subtract the weight ω value calculated on the left side

from the average charge amount.

② Add the weight ω value calculated on the right side to

the average charge amount.

③ Check whether the user’s average charge amount Pij

satisfies this condition.

The calculation that satisfies the above conditions is as in

(3).

(3)

The average charging-power rate was calculated using (2).

In addition, the average charging-power rate of CSi can be

calculated by entering Pi into the element. If the average

charging-power rate of Uj, which is the subject of trust eval-

uation, is within the allowable range of the average charge

amount of CSi, this indicates that the trust of Uj is high. If

the charging station meets the trust-evaluation criteria out-

lined in the previous section and Uj satisfies the conditions

of constant charging frequency, charging time, charging

amount, and low-error payment, OTP authentication is per-

formed. If any of these conditions are not met, the existing

TLS authentication is used.

The proposed algorithm applies a differentiated authentica-

tion to EV users with specific charging patterns. The pro-

posed algorithm replaces TLS authentication with OTP

authentication, resulting in a reduction in the number of TLS

authentication attempts, which decreases the overhead.

B. New ML-based Differential Authentication

The arbitrarily set threshold (i.e., 1.95), although a conve-

nient starting point, revealed its limitations in providing an

accurate evaluation of the trust of the user-charging pattern

through our algorithm. In this section, our objective is to

delve deeper into this issue by comparing and elaborating on

the thresholds derived using various machine learning mod-

els. The models employed for this comparative analysis

include linear regression, decision-tree regression, random

forest regression, and k-nearest neighbors (k-NN) regression.

We used a dataset of EV charging data encompassing 50

users, 11,683 rows, and ACN-Data [15]. Each piece of data

within the set provides valuable insights into the charging

patterns and behaviors. The model was trained and tested to

assess its predictive accuracy by comparing the set threshold

with actual charging patterns. These experiments serve as a

foundation for exploring the effectiveness and performance

of various machine learning techniques in determining the

threshold indicating trust in charging patterns. When we

trained the model at the beginning of our study, we obtained

results similar to those of the k-NN in Table 2.

Initially, we confirmed that it is difficult to set the pre-

dicted value using machine learning as the threshold value.

This is because the amount of power, charging type, and user

ID are used as input data to obtain the charging time as the

output data, and each user has a different charging pattern.

At the beginning of the study, the performance evaluation

results were poor. However, the addition of charging dura-

tion improved the results. When conducting machine learn-

ing model training with a test size of 25-30%, it is possible

to compare the performance of the four models. The deci-

sion-tree model was found to be the most suitable.

This is done by substituting the calculation result of the

charging end date-charging start date, and the charging time

prediction result is calculated. Therefore, the threshold cal-

culation through machine learning training compares the

average value for each item with the average value of the

threshold. This is determined by the user characteristics and

requires further study because it can be regular or irregular.

In the previous sections, we confirmed the previously pro-

posed algorithm and explained the machine learning thresh-

Pij
j 1=

N
Pij

N
-----------------=

Pi ω– Pij Pi  ω+

Table 2. Charging time threshold performance results

Model MSE MAE SMAPE Process time

Linear Regression 2.428s 4.309s 5.590 % 0.031s

Decision Tree 2.010s 0.597s 0.036 % 0.044s

Random Forest 1.092s 0.451s 0.029 % 1.319s

k-NN 401.1s 8.907s 0.621 % 0.049s
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old-setting method, which is a change from the existing

numerical-based threshold-setting method. This section describes

the improved differential authentication method. The prob-

lem with existing algorithms is the lack of numerical thresh-

old-setting methods and trust-evaluation items. To solve this

problem, we reviewed a recent study on the analysis of EV

user-charging behavior using machine learning models. We

used a suitable model to calculate the predicted threshold

value from the user-charging data, which was then compared

with the average user value.

In [16-18], decision-tree methods were shown to be the

most effective in predicting EV user behavior. Random For-

est [16] and Gradient Boosted Decision Tree (GBDT) meth-

ods, such as eXtreme Gradient Boosting (XGBoost) [17] and

Light Gradient Boosting Machine (LGBM) [18], are tree-

based methods used for EV charging behavior prediction.

Among the models mentioned, the LGBM was faster than

the GBDT. However, its application should consider the size

of the EV charging data as it may overfit small-scale data.

This study evaluated trust indicators for both charging sta-

tions and users. The CS trust index was assessed using the

CS payment error and return rates of electric vehicle users.

If the station’s trust is high, user trust is evaluated using the

peak-hour visit rate, payment error rate, average EV charging

amount, and average EV charging time. The values predicted

by training the LGBM were averaged and compared.

To implement the proposed differential authentication, we

evaluated the trust of both the CS and user in the following

steps.

• Step 1 (lines 1-6): The user trust is evaluated by com-

paring their evaluation items with the machine learning

threshold value. To calculate the average value, (2) was

used with only the corresponding elements changed. The

average charging time of Uj, which is the target of the

trust evaluation of the current charging station CSi is

calculated and substituted into Tij. Similarly, the average

charging amount of U is calculated and substituted into

Pij. The average error payment rate of Uj is calculated

and substituted into Sij. Predict and calculate Uj’s

charging time, charging amount, and payment error rate

using the machine learning model LGBM, and substitute

the average values into  and . Finally, the

average payment error rate of the model’s predicted

value is substituted into .

• Step 2 (lines 7-8): The assessment of charging station

trust involves comparing payment error and user return

rates. For CSi to be deemed very reliable, its payment

error rate must be lower than the average payment error

rate of all the charging stations and its user return rate

must be higher than the average return rate of all the

charging stations. The user return rate is determined by

dividing the number of visits by the total number of vis-

its during each period. This calculation provides the

average return rate for all users in each period. Reliable

charging stations offer seamless services to EV users,

encouraging them to return to the CS. In simpler terms,

if both the average return rate of all charging stations

and the return rate of the CS corresponding to CSi are

high, then the CSi is considered to have high trust.

• Step 3 (lines 9-12): The user trust-evaluation item

checks the peak-hour visit rate of CSi. To calculate the

peak-hour visit rate, increase the counter count when Uj

visits during the time when the power consumption of

the CSi charging station is the highest and divide it by

the total visit period. To ensure a high trust in Uj, the

average user value entered in Step 1 is compared with

the average threshold value set by machine learning.

The average charging time and amount of charging Uj

must be greater than the threshold values. Additionally,

the Uj average payment error rate must be lower than

the threshold value.

As a result, the charging station user must have a lower

payment error rate, higher average charging-power rate, and

higher average charging time than the prediction data gener-

ated by model learning. The peak-hour visit rate for the user

must be lower than the average peak-hour visit rate for

charging station users. Thresholds using machine learning

learn from the user data in the model and predict each indi-

Tij
pred

Pij
pred

Sij
pred
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cator. These were then reprocessed into the user’s average

payment error rate, average charging-power rate, and aver-

age charging time. The LGBM [19] is much better than

Gaussian Mixture Model-based models and similar sessions.

This highlights the effectiveness of data-driven models in

predicting the behaviors of EV users.

If the trust in the charging station visited by the user is

evaluated as high, we perform a trust evaluation using the

user’s EV charging data. The results of the trust evaluation

are expressed as high or low levels of user trust. This

reduces the communication overhead that occurs during the

authentication of existing TLS users. This is because, when

user trust is rated high, the number of TLS authentications is

reduced using a simple authentication method instead of the

existing TLS authentication. In other words, in the case of a

charging station with many highly trusted users, the number

of TLS authentications is reduced, thereby reducing the

overhead of the charging station. Although this approach is

performed on a server, the trust-assessment cycle and time

must be considered depending on the server environment.

III. PERFORMANCE EVALUATION

A. Simulation Tool & Settings

We conduct the simulation using Python version 3.9 in

both a Windows environment and Ubuntu 20.04. First, we

illustrate our simulation settings (Table 3), followed by sim-

ulation results and discussions to evaluate the obtained

results.

Simulation results were obtained across various scenarios

based on the findings. The second-scenario simulation results

were replicated in 1,000 parallel instances using four pro-

cesses to generate a busy waiting state for the CPU. The

third simulation result included three sleep commands of

0.333s each to stop and restart the process.

B. Analysis of Results

Figs. 1-3 show the performance ranking of Basic and OTP,

followed by that of TLS. In Fig. 1, the CPU status for the

three authentication methods can be observed in (a) without

any scenarios. OTP authentication gradually stabilizes, whereas

basic authentication exhibits a relatively fast processing

speed. As a result, the CPU load increases slightly up to a

load count of 60 on the x-axis of the graph and then decreases

again. The basic authentication pattern is confirmed in (c) by

a slight increase and subsequent decrease in the RTT. In con-

trast, the TLS completes 3-way handshaking sequentially,

resulting in a slight increase in the load count to 60, fol-

lowed by stabilization.

Fig. 2 illustrates a busy waiting-state scenario by assigning

weights to the CPU during the authentication stage. Fig. 2

Fig. 1. Normal state: during user authentication.

Table 3. Simulation parameters

Parameters Value/ Range

Simulation set count 1 set of 100 repeat for each load count

User authentication Basic, TLS, OTP

CPU busy waiting (s) Parallel execution repeat 1,000 times with 4 processes

Process sleep (s) 3 times for 0.333 seconds

Table 4. Results by scenario

Scenario Min (a) Max (a) Min (b) Max (b)

Fig. 1 Basic 0.96 % 1.90 % 0.11s 0.12s

Fig. 1 OTP 0.95 % 2.15 % 0.11s 0.11s

Fig. 1 TLS 1.88 % 2.73 % 0.12s 0.12s

Fig. 2 Basic 2.84 % 5.56 % 0.52s 0.53s

Fig. 2 OTP 3.45 % 3.69 % 0.51s 0.53s

Fig. 2 TLS 4.19 % 6.6 % 0.87s 0.91s

Fig. 3 Basic 3.13 % 3.13 % 1.03s 1.03s

Fig. 3 OTP 3.71 % 4.32 % 1.03s 1.04s

Fig. 3 TLS 5.10 % 6.62 % 1.12s 1.14s
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(a) shows a pattern similar to that shown in Fig. 1(a), the

CPU load remains stable at less than 4% during OTP authen-

tication. This is further supported by (b) and (c), which show

that RTT is not different from basic authentication. However,

for TLS authentication, the RTT increased significantly to

0.9 compared to the normal state. During TLS authentica-

tion, a 3-way handshake is used between the server and cli-

ent while exchanging messages. This imposes a significant

burden on each recipient waiting for a response, resulting in

a considerable increase in the round-trip time. In (b) and (c),

OTP outperformed TLS by 37% in terms of RTT.

Fig. 3 illustrates a scenario in which the authentication

process is interrupted three times for 0.333 s before restart-

ing. As shown in Fig. 3(a), the CPU load for basic authenti-

cation remains stable at approximately 3%. Figs. 1 and 2

demonstrate that OTP authentication is more stable than

other methods; however, the sleep state during the OTP

encryption process is a disadvantage. However, both (b) and

(c) exhibit RTT levels similar to those of basic authentica-

tion. Additionally, Fig. 3 shows that when the load count

confirmed in Figs. 1 and 2 reaches 60, the increase in RTT

for TLS authentication is significantly higher than that of the

other authentication methods. This is evident in (c), the

detailed screen of RTT, where TLS authentication in the sce-

narios depicted in Fig. 2(c) and Fig. 3(c) displays a highly

unstable RTT compared to the other two authentication

types. As shown in Figs. 1-3, when various charging patterns

of EV perform TLS authentication, there is a significant dif-

ference in the actual server.

We evaluated user trust based on EV charging data and

proposed an algorithm that replaces complex TLS authenti-

cation with simpler OTP authentication. As shown in Table

4, the proposed algorithm is used to replace highly trusted

users with OTP authentication. In Fig. 2(c) RTT perfor-

mance, calculated using the minimum value in Table 4,

decreased by 0.36s from 0.87s to 0.51s, which indicates an

improvement of 41.36%. If calculated using the maximum

value in Table 4, it decreased by 0.38s from 0.91s to 0.53s,

which is an improvement of up to 41.76%. It becomes more

sensitive when users whose trust evaluations have been com-

pleted are processed simultaneously. Because TLS authenti-

cation is not performed on M users, who are highly trusted

users, rather than performing TLS authentication on all N

users, the performance can be improved by M-N.

Fig. 2. Weighted busy for CPU: during user authentication.

Fig. 3. Process sleep 3 times for 0.333 sec: during user authentication.
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In this paper, we explain the replacement of TLS authenti-

cation, which is performed in the transport layer, with OTP

authentication, which is performed in the application layer.

In other words, the communication overhead is also reduced

by performing a user trust evaluation and then reducing the

number of TLS authentications using a differential authenti-

cation method.

IV. CONCLUSION AND FUTURE WORK

In this study, we propose a new scheme to evaluate the

trust of users and apply simpler authentication instead of

TLS authentication if the trust is high. To evaluate trust in

the CS, we add the user’s return rate and the peak-hour visi-

tation rate for user evaluation. We demonstrated that replac-

ing TLS authentication with a simpler authentication method

such as OTP authentication for high-trust users is more effi-

cient when the server is busy waiting. In a future study, we

plan to minimize the error range of the trust-evaluation

items. We also plan to analyze alternative, simpler authenti-

cation methods more clearly.
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