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Abstract
To identify differentially expressed genes (DEGs), researchers use a testing method for each gene. However,

microarray data are often characterized by large dimensionality and a small sample size, which lead to problems
such as reduced analytical power and increased number of tests. Therefore, we propose a clustering method.
In this method, genes with similar expression patterns are clustered, and tests are conducted for each cluster.
This method increased the sample size for each test and reduced the number of tests. In this case, we used
a nonparametric permutation test in the proposed method because independence between samples cannot be
assumed if there is a relationship between genes. We compared the accuracy of the proposed method with that
of conventional methods. In the simulations, each method was applied to the data generated under a positive
correlation between genes, and the area under the curve, power, and type-one error were calculated. The results
show that the proposed method outperforms the conventional method in all cases under the simulated conditions.
We also found that when independence between samples cannot be assumed, the non-parametric permutation test
controls the type-one error better than the t-test.
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1. Introduction

Genes are sometimes involved in diseases such as cancer. Therefore, it is medically essential to know
which genes are involved in a disease, and this information can assist in the development of new drugs
and treatment methods. However, there are tens of thousands of genes, and it is impossible to conduct
experiments on each gene. Therefore, candidate genes involved in a disease are typically narrowed
down using statistical analyses (Dudoit et al., 2002). This method takes into consideration that the
mere presence of a gene does not affect the organism. However, its expression reveals the information
contained in the gene, and the information in the gene is predicted by measuring and analyzing the
expression level, which is the numerical expression intensity. Differentially expressed genes (DEGs)
are expressed in cells under various conditions (Pan, 2002). Because these DEGs can be regarded as
candidates for genes involved in diseases, the detection of DEGs can narrow the list of genes. For
example, DEGs whose expression levels differed between normal and cancer cells were likely to be
cancer-related genes.

Genomic data were used to detect DEGs, and two data types are currently used. One was microar-
ray data obtained from DNA microarray experiments, and the other was RNA-seq data obtained from
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next-generation sequencing experiments. Microarray data were used in this study. The expression
level is defined as the fluorescence intensity of a fluorescent substance that shines more strongly when
it is strongly expressed and is a continuous type of data (Draghici, 2012). These data roughly follow
a logarithmic normal distribution and, when analyzed, a method that assumes a normal distribution
with a logarithmic transformation (Holye et al., 2002). However, the true distribution of microarray
data is unknown because it has not been mathematically proven that the distribution of microarray
data is lognormal. All data represent expression levels in matrices, with rows representing gene types
and columns representing cell types, and differ only in the definition of expression levels. The data is
characterized by a small sample size, whereas the dimensions of the data are very large because there
are usually tens of thousands of gene types (Amaratunga et al., 2014). This is because experiments to
measure the expression levels require experimental animals such as rats and subjects that cannot be
conducted in large quantities from an ethical point of view.

In this study, we focused on identifying the DEGs between the two groups. Examples of two-
group comparisons include the cases mentioned above of normal cells and cancer cells, as well as
cases of cells treated with drugs and cells not treated with drugs. Most of these are used to identify
the causative gene of a particular disease or a gene affected by a specific substance. Outside of
medicine, they are used to discover genes with different expression patterns between organisms, such
as monkeys and chimpanzees. In addition, although not addressed in this study, it is sometimes used
to compare expression levels in three or more groups of organisms (Churchill, 2004). This is the case
when researchers want to compare the effects of multiple treatments or drugs for a particular disease
or when they want to observe whether the expression levels change over time after the administration
of a specific drug.

There are currently two primary methods for identifying DEGs using genomic data. One is based
on fold change, and the other on testing. In a broad sense, fold change measures how much ex-
pression differs between two groups. The statistic that could be inferred to have a high probability
of being a DEG with a large value was calculated, and the gene with a large value was designated
as a DEG. Representative methods include the average difference (AD), weighted average difference
(WAD) (Kadota et al., 2008), and rank product (RP) methods (Breitling et al., 2004). The AD and
WAD methods utilize the difference between the mean expression levels of the two groups. The RP
method focuses on the ratio of the expression levels of two groups and is known to be less affected by
outliers than the AD and WAD methods. These methods are simple and easy to interpret, even without
statistical knowledge; however, because they are not statistical methods, probabilities such as p values
cannot be calculated, and it is difficult to determine which genes are DEGs. Another disadvantage of
some methods is that they are vulnerable to outliers due to small sample sizes.

The test-based method performs statistical testing for each gene, and the gene with the most sig-
nificant difference is designated as a DEG. Usually, genes are ranked by the p-value, and the genes
with a small p-value are selected as DEG; and, because the p-value can be calculated, it is easier to
determine the threshold to which a gene is designated as a DEG than the fold change-based method.
As mentioned previously, because microarray data are often analyzed by assuming that they follow
a normal distribution, the t-test (Welch, 1947) is often used. However, considering the sample size
is too small to assume a distribution and the true distribution is unknown, the Wilcoxon rank-sum
test (Wilcoxon, 1945) may be used. The disadvantages of test-based methods are their low accuracy,
which is a result of the small sample size and multiplicity of tests. As for the multiplicity of tests, the
type-one error can be reduced to some extent by adjusting the p-value using the Benjamini-Hochberg
step-up method (Benjamini and Hochberg, 1995); however, this does not completely eliminate the
type-one error.
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To overcome these weaknesses, we propose a new clustering method. When a specific reaction
or change occurs in a living organism, it may be accompanied by another change. In this case, when
a gene controlling one of the changes was expressed, the gene that is controlling the other was also
expressed. Therefore, many genes interact with each other. Because there are many genes whose
functions are not yet known, even with current technology, this property may be used to predict the
function of an unknown gene (Brown, 2002). Specifically, the expression levels of genes were mea-
sured under multiple conditions and clustered, and the genes showing similar expression patterns were
identified. In this case, the genes classified in the same cluster can be interpreted as containing similar
information. Based on this assumption, DEGs and non-DEGs were classified into different clusters
when genes in the genome data were clustered. Therefore, DEGs can be detected by determining
which cluster is a DEG cluster rather than by deciding whether each gene is a DEG. Consequently, we
considered a method to determine whether each cluster was a DEG cluster using a test after clustering.
By testing clusters instead of genes, the number of tests is reduced, and the sample size for each test
is increased; thus, the accuracy is expected to be higher than that of the conventional method.

When a correlation exists between genes, independence between samples in the same cluster can-
not be assumed. Because most of the tests currently used for two-group comparisons require the
assumption of independence, it is necessary to consider how to deal with this problem. Instead of
the t-test, we attempted to perform a nonparametric permutation test, which is considered suitable
for the proposed method used for dealing with correlated data (Edgington and Onghena, 2014). We
investigated the accuracy of the proposed method by comparing it with conventional methods through
simulations. The methods compared were the t-test, the Wilcoxon rank-sum test, the proposed method
using t-test, the Wilcoxon rank-sum test ignoring correlation, and the proposed method using a per-
mutation test. For each of these methods, we calculated the accuracy when the data was generated
by varying the correlation coefficients among the genes belonging to the same cluster, assuming that
the genes formed several clusters. Other methods similar to the proposed method include gene set
enrichment analysis (GSEA) (Subramanian et al., 2005), significance analysis of microarray to gene-
set analyses (SAM-GS) (Dinu et al., 2007), and rotation gene set testing (ROAST) (Wu et al., 2011).
These are testing methods for gene sets. In the simulation, we compare the proposed method with
these methods to see which one can detect DEGs with higher accuracy.

In the next section, we describe the proposed method in detail. Section 3 presents the setup and
simulation results, and Section 4 summarizes the study.

2. Method using clustering

2.1. Procedure of the method

Let Xi j be the expression level of group 1 and Yi j′ be the expression level of group 2 in gene i (i =

1, . . . , g; j = 1, . . . , n1; j′ = 1, . . . , n2). In the proposed method, g genes are first classified into K
clusters. Let ak be the total number of genes in the cluster k(k = 1, . . . ,K). Then, the expression level
of gene l(l = 1, . . . , ak) belonging to cluster k in Group 1 is denoted by

Xk
l1, . . . , X

k
ln1
,

The expression levels in group 2 were

Yk
l1, . . . ,Y

k
ln2
.

In this case, we use

Xk
11, . . . , X

k
1n1
, . . . , Xk

ak1, . . . , X
k
akn1

,
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and

Yk
11, . . . ,Y

k
1n2
, . . . ,Yk

ak1, . . . ,Y
k
akn2

as samples and a two-group comparison test was performed. If the expression levels of the two
groups were regarded as significantly different, all the genes belonging to cluster k were identified as
DEGs. This operation is performed for all k. In this study, the k-means method (Lloyd, 1982) and the
Gaussian mixture model (GMM) (Banfield and Raftery, 1993) were used as clustering methods. The
testing methods are discussed in Section 2.3. To implement the proposed method, it was necessary
to specify the number of clusters at the time of clustering. Many methods have been proposed for
estimating the number of clusters. Most are based on the information criterion, where the optimal
number of clusters minimizes the information criterion, such as the Akaike information criterion
(AIC) or the Bayesian information criterion (BIC). When using the proposed method, it is necessary
to calculate these information criteria. If the actual number of clusters can be predicted, the proposed
method can be executed using any number of clusters above the predicted number.

2.2. Clustering method
2.2.1. k-means method

The k-means method is one of the most representative nonhierarchical clustering methods. Because
hierarchical clustering is known to be computationally expensive, this method was chosen for this
study as it requires the clustering of a significant number of genes and is relatively computationally
inexpensive. Let us consider assigning a binary indicator variable uik ∈ {0, 1} to each data point
zi = (xi1, . . . , xin1 , yi1, . . . , yin2 ). This uik takes the value of 1 if gene i belongs to cluster k and 0
otherwise. The objective function J is defined as follows:

J =

g∑
i=1

K∑
k=1

uik ||zi − ck ||
2,

where ck = (ck1, . . . , ckn1+n2 ) is the center of cluster k, and || · || denotes the Euclidean norm. uik and
ck values that minimize J must be found. This can be achieved by repeating the following two steps:
First, set the initial value of ck. In a typical k-means method, the initial value is determined randomly;
however, another method is proposed to determine the initial value based on certain rules (Arthur and
Vassilvitskii, 2007). Next, we minimize J for uik with ck fixed. Then, uik is fixed, and J is minimized
for ck. These two steps are repeated until convergence is achieved. Now, we consider the optimization
of ck with uik fixed. Because J is a function of ck, we find the minimum value by setting the partial
derivative to zero as follows:

2
g∑

i=1

uik(zi − ck) = 0.

To solve this, we obtain

ci =

∑
i uik zi∑

i uik
,

where ck is interpreted as the average of all points belonging to cluster k.



An approach based on clustering in microarray data analysis 575

2.2.2. GMM method

As mentioned above, microarray data are often tested by assuming a normal distribution. Therefore,
we decided to use the normal distribution method for clustering. The GMM introduced in this section
is a clustering method that uses a mixed normal distribution. The mixed normal distribution is a
combination of several multivariate normal distributions and has the following probability density
function:

f (zi) =

K∑
k=1

πkN (zi | µk,Σk) ,

where N(zi|µk,Σk) is the probability density function of the multivariate normal distribution with
mean vector µk and variance-covariance matrix Σk, πk is the probability density of 0 ≤ πk ≤ 1, and∑K

k=1 πk = 1. In this case, the GMM method assumes that the data following a normal distribution
with the same parameters belong to the same cluster. To find the clusters to which each zi belongs, we
assume that P(uik = 1) = πk for all i and calculate P(uik = 1|zi). From Bayes theorem, we obtain

P(uik = 1 | zi) =
P(uik)P(zi | uik = 1)∑K

m=1 P(uim)P(zi | uim = 1)

=
πkN(zi | µk,Σk)∑K

m=1 πmN(zi | µm,Σm)
.

The parameters (πk,µk,Σk; k = 1, and · · · ,K), which are necessary for the calculation were estimated
using the maximum likelihood method. The log-likelihood function of the mixed normal distribution
is as follows:

log L (πk,µk,Σk) =

g∑
i=1

log

 K∑
k=1

πkN(zi | µk,Σk)

 .
When the partial differentiation is set to zero, we obtain

µk =

∑g
i=1 γik zi∑g

i=1 γik
,

Σk =
1∑g

i=1 γik

g∑
i=1

γik (zi − µk) (zi − µk)T ,

where

γik =
πkN(zi | µk,Σk)∑K

m=1 πmN(zi | µm,Σm)
.

This rate is known as the burden rate. As πk is constrained to satisfy
∑K

k=1 πk = 1 from the Lagrange
multiplier, then

G = log L (πk,µk,Σk) + λ

 K∑
k=1

πk − 1

 .
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Differentiating G by πk and λ and setting the derivative to zero, we obtain the following:

πk =

∑g
i=1 γik

g
.

Because all the parameters calculated above are functions of the burden ratio, and the burden ratio also
depends on the parameters, they cannot be calculated analytically. Therefore, they were computed us-
ing the expectation-maximization (EM) algorithm (Dempster et al., 1977). In the EM algorithm, the
initial values of the parameters are first determined. The burden ratio was calculated using the initial
values. Finally, the parameters were recalculated using the burden rates. In this manner, the parame-
ters and the burden ratio were alternately calculated, and the process was repeated until convergence
was achieved. The calculation of the burden ratio is called the E-step, and that of the parameters is
called the M-step. Unlike the k-means method, GMM does not strictly specify a single cluster to
which each data point belongs because the output is the probability of belonging to each cluster. This
clustering method is called soft clustering, whereas a clustering method that provides a binary output
of belonging or not belonging to each cluster, such as the k-means method, is called hard clustering.
However, due to the characteristics of the proposed method, when using GMM, the cluster with the
highest probability of belonging was uniquely defined as the data cluster.

2.2.3. Clustering accuracy

If the data belonging to the same cluster are correlated, the higher the correlation coefficient, the better
the clustering accuracy of the proposed method. The Euclidean distance between zi and zi′ (i , i′) is
considered. The expected value of the square of the difference in the first component of each vector is

E
[
(Xi1 − Xi′1)2

]
= E

(
X2

i1 − 2Xi1Xi′1 + X2
i′1

)
= E

[
X2

i1

]
+ E

[
X2

i′1

]
− 2 {Var(Xi1)Var(Xi′1)ρ(Xi1, Xi′1) + E[Xi1]E[Xi′1]} .

We can say that the larger the correlation coefficient, the smaller the expected distance between two
points. In the k-means method, which performs clustering by Euclidean distance, and in GMM,
data with similar numerical values are more likely to be classified into the same cluster, resulting in
better clustering accuracy. Genes interact with one another to form complex networks. Cancer genes
regulate the expression of other genes. Because several databases record which genes comprise the
network, it may be possible to determine whether there are interactions between genes using these
databases. This indicates that the proposed method can be applied to the data. DEG detection can
be performed accurately if the proposed method can be applied to the data. This method can be used
with both microarray and RNA-seq. However, it is the microarray that is easier to determine if it
is operational. We now compare microarray and RNA-seq data. Microarray cannot detect unknown
or rare transcripts. However, this means that many of the genes that can be detected by microarrays
are genes that exist in the database. Therefore, it is often possible to know whether a gene forms a
cluster by referring to the database. On the other hand, RNA-seq may contain genes that are difficult
to determine if they form clusters or not.

2.3. Statistical testing
2.3.1. Choice of test

In the proposed method, because the expression levels of multiple genes obtained from the same cell
were tested as samples, independence between the samples cannot be assumed if there is a relationship



An approach based on clustering in microarray data analysis 577

between the genes. In most cases, a positive correlation was observed between the expression of these
genes. One problem in this case is that the test statistic of the t-test becomes large because the sample
variance decreases as the number of similar values increases. In other words, the difference between
the groups was overestimated, which increased type-one errors. Therefore, it is necessary to transform
the data or test the statistics to address these correlations. Currently, the following methods are used
to test correlated samples: (1) Ignoring the correlation. (2) Summarizing the correlated data. (3)
Correcting the test statistic of the t-test. (4) Performing a test that does not require random sampling.

When correlations are ignored, the t-test can be used to perform two-group comparisons (Galbraith
et al., 2010), which is often used in real analyses but cannot solve the problem. Data summarization
is a method for generating independent data by determining a representative value, such as the sample
mean for correlated data, and viewing it as a single sample (Virmani et al.,2006). However, because
our motivation for proposing this method was to increase the sample size, we judged that a summary,
which would reduce the sample size was not appropriate.

A correction for the t-test was proposed by Gonen et al. (2001). This method divides the test
statistic by the number of correlated samples and the magnitude of the correlation. However, we
believe that this method is not suitable for this study. This is because the corrected t-test assumes that
the samples that are correlated with each other are known, such as when the samples are obtained
from the same subject. Although it may be possible to predict microarray data by clustering or using
genetic databases from previous studies, we decided not to use the corrected t-test to propose a method
that can be used in a more general way.

Finally, we discuss the tests that do not require random sampling. As mentioned above, the prob-
lem of correlated data is caused by sample variance. Therefore, an increase in type-one errors can be
prevented by conducting a test in which the test statistic is less affected by sample variance. Conse-
quently, we consider a nonparametric permutation test that uses the difference in means. Nonpara-
metric permutation tests do not require random sampling (Edgington and Onghena, 2014). However,
some studies have shown that if the samples are correlated, the permutation changes the correlation
structure, thus reducing the power of the test (Blair and Karniski, 1993). Therefore, we decided to
compare the simulations in which the test is more suitable for microarray data, the permutation test
controls the type-one error, and the t-test, which increases the type-one error but has no power prob-
lem.

2.3.2. Permutation test

The permutation test is a nonparametric test that calculates the p-value as the proportion of permuted
data with a mean difference greater than that of the original data. Although the test statistic of the
t-test may be used instead of the difference in means, we use the simple difference in means as an
indicator to avoid the influence of sample variance. In the permutation test of the proposed method,
the null hypothesis is that there is no difference in the population means, and we first compute the
difference in means in cluster k as follows:

P =
1

akn2

ak∑
l=1

n2∑
j′=1

Yk
l j′ −

1
akn1

ak∑
l=1

n1∑
j=1

Xk
l j.

Then, akn1 of the ak(n1 + n2) samples are selected as the expression values of Group 1, and those
that are not selected are the expression values of Group 2. The difference in means was calculated
again. This is repeated B times, and the calculated difference in the means is denoted by P1, . . . , PB.
B represents all combinations

(
ak(n1+n2)

akn1

)
for a small sample size and any natural number for a large
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Table 1: Results of calculating the AUC, detection power, and type-one error for each method for different
correlation coefficients

Method Evaluation indices ρ = 0 ρ = 0.1 ρ = 0.5 ρ = 0.9

Welch t-test
AUC 0.703 0.704 0.703 0.701
power 4.0 × 10−6 8.3 × 10−6 1.0 × 10−6 1.1 × 10−6

type-one error 8.6 × 10−7 8.6 × 10−7 8.6 × 10−7 8.5 × 10−7

Wilcoxon rank-sum test
AUC 0.687 0.687 0.686 0.686
power 0.000 0.000 0.000 0.000

type-one error 0.000 0.000 0.000 0.000

k-means+Welch t-test
AUC 0.717 0.717 0.720 0.723
power 0.865 0.867 0.872 0.879

type-one error 0.672 0.673 0.674 0.680

GMM+Welch t-test
AUC 0.717 0.718 0.721 0.726
power 0.867 0.871 0.878 0.883

type-one error 0.673 0.675 0.680 0.686

k-means+Wilcoxon rank-sum test
AUC 0.714 0.714 0.716 0.720
power 0.849 0.851 0.856 0.862

type-one error 0.645 0.644 0.645 0.651

GMM+Wilcoxon rank-sum test
AUC 0.714 0.715 0.718 0.722
power 0.853 0.857 0.862 0.867

type-one error 0.646 0.648 0.652 0.658

k-means+Permutation test
AUC 0.773 0.775 0.782 0.785
power 0.830 0.832 0.841 0.853

type-one error 0.361 0.359 0.354 0.360

GMM+Permutation test
AUC 0.769 0.772 0.781 0.784
power 0.830 0.834 0.846 0.856

type-one error 0.362 0.361 0.356 0.363

sample size. In this case, the p-value of the permutation test is∑B
b=1 I(Pb > P)

B
.

If the alternative hypothesis is that the population mean of Group 2 is larger, this p-value is used as is,
whereas in the case of a two-tailed test, the p-value is doubled. The only assumption required to run
the test is that the sample is permutable under the null hypothesis (Hayes, 1996).

3. Simulations

3.1. Simulation settings

In the simulations, we compared the proposed method with two conventional methods. As a common
setup for all simulations, we used data with g = 10000, n1 = 3, n2 = 3. The number of DEGs was
3000; the genes formed several clusters, and the genes in the same cluster were positively correlated.
The correlation coefficients ρwere assumed to be 0, 0.1, 0.5, or 0.9. The expression level of each gene
followed a normal distribution, and the mean expression level was differentially expressed gene-by-
gene, with values ranging from 3 to 15. In the DEG, the difference in the actual means was assumed
to be 2. The number of clusters is arbitrarily set at 500 when we use the proposed method. This
is the true number of clusters in the simulated data. When analyzing real data, estimation of the
number of clusters is necessary. The number of simulations was set to 1000, and the area under the
curve (AUC), detection power, and type-one error were used as accuracy evaluation indices. AUC
is one of the evaluation criteria used to determine whether a data point is positive or negative. It
represents the area under the curve plotted with the true positive rate on the vertical axis and the false



An approach based on clustering in microarray data analysis 579

Table 2: Results of calculating the AUC, detection power, and type-one error for each method for different
correlation coefficients when compared to the test for the gene set

Method Evaluation indices ρ = 0 ρ = 0.1 ρ = 0.5 ρ = 0.9

k-means+GSEA
AUC 0.648 0.645 0.637 0.632
power 0.782 0.786 0.798 0.820

type-one error 0.666 0.673 0.696 0.728

GMM+GSEA
AUC 0.654 0.648 0.636 0.632
power 0.798 0.795 0.803 0.825

type-one error 0.671 0.677 0.699 0.729

k-means+SAM-GS
AUC 0.691 0.692 0.698 0.705
power 0.037 0.038 0.037 0.039

type-one error 0.012 0.012 0.012 0.012

GMM+SAM-GS
AUC 0.697 0.699 0.706 0.711
power 0.039 0.038 0.038 0.040

type-one error 0.013 0.012 0.012 0.012

k-means+ROAST
AUC 0.691 0.692 0.698 0.711
power 0.037 0.037 0.038 0.038

type-one error 0.012 0.012 0.012 0.011

GMM+ROAST
AUC 0.697 0.699 0.707 0.711
power 0.039 0.039 0.039 0.040

type-one error 0.013 0.013 0.012 0.012

k-means+Permutation test
AUC 0.773 0.775 0.782 0.785
power 0.830 0.832 0.841 0.853

type-one error 0.361 0.359 0.354 0.360

GMM+Permutation test
AUC 0.769 0.772 0.781 0.784
power 0.830 0.834 0.846 0.856

type-one error 0.362 0.361 0.356 0.363

positive rate on the horizontal axis and takes values from 0 to 1. A value close to 1 indicates that the
classification accuracy of the method is good, and the AUC approaching 0.5 indecates a completely
random classification of positives or negatives. AUCs in this study are based on p-values. First, we
make a ranking of genes by p-value. Then, the AUC is the area under the curve when the ROC curve
is drawn with different thresholds for how many genes are determined to be DEGs. The value shown
is the average of the AUCs for 1000 simulations. The significance level was set at 0.05 when used to
obtain the power and type-one error.

3.2. Result and discussion

The simulation results are listed in Table 1. First, we calculated the AUC. The highest AUC is obtained
by the method using the permutation test, followed by the method using the t-test after clustering, the
method using the Wilcoxon rank-sum test after clustering, the method using only the t-test, and the
method using only the Wilcoxon rank sum test. This indicates that the proposed method is more
accurate than conventional methods when used to generate rankings. Specifically, we found that
the t-test is more accurate than the Wilcoxon rank-sum test for both the proposed and conventional
methods. This is because the true distribution is a normal distribution, and the parametric method
fits better. The permutation test that outperforms the t-test is discussed later, but it appears that this
result is due to the suppression of the type-one error. While the accuracy of the conventional method
does not change significantly with a change in the correlation coefficient, the proposed method tends to
improve its accuracy when the correlation coefficient is large. This is because the correlation improves
the clustering accuracy. Among the clustering methods, k-means was slightly more accurate when the
correlation was small, and GMM was slightly more accurate when the correlation was large.
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Table 3: Results of calculating AUC, detection power, and type-one error for each method with different
correlation coefficients when genes are correlated but do not follow the same distribution

Method Evaluation indices ρ = 0.1 ρ = 0.5 ρ = 0.9

Welch t-test
AUC 0.705 0.703 0.698
power 1.3 × 10−6 1.0 × 10−6 1.1 × 10−6

type-one error 1.57 × 10−7 1.57 × 10−7 2.57 × 10−7

Wilcoxon rank-sum test
AUC 0.688 0.686 0.684
power 0.000 0.000 0.000

type-one error 0.000 0.00 0.000

k-means+Welch t-test
AUC 0.718 0.716 0.716
power 0.866 0.870 0.874

type-one error 0.673 0.675 0.680

GMM+Welch t-test
AUC 0.717 0.708 0.698
power 0.870 0.875 0.874

type-one error 0.674 0.683 0.691

k-means+Wilcoxon rank-sum test
AUC 0.715 0.713 0.714
power 0.850 0.854 0.857

type-one error 0.644 0.646 0.652

GMM+Wilcoxon rank-sum test
AUC 0.714 0.706 0.696
power 0.856 0.859 0.857

type-one error 0.647 0.656 0.665

k-means+Permutation test
AUC 0.774 0.779 0.780
power 0.832 0.838 0.845

type-one error 0.360 0.356 0.359

GMM+Permutation test
AUC 0.771 0.777 0.775
power 0.834 0.841 0.846

type-one error 0.363 0.360 0.366

Next, we consider detection power and type-one errors. First, both the detection power and type-
one errors of the conventional method were minimal. This may be because the p values are generally
large and there are almost no null hypotheses that can be rejected. This indicated that the conventional
method did not function as a classifier when the significance level was 0.05 or lower. The proposed
method using the t-test had the highest power, followed by the proposed method using the Wilcoxon
rank-sum test, and finally, the proposed method using the permutation test. However, the type-one
error showed the opposite trend, especially when the permutation test was much smaller than the
other two. This indicates that the p values of the proposed methods using the t-test and Wilcoxon
rank-sum test are generally smaller and that the proposed method detects an excessive number of
DEGs. The large type-one error of the proposed method, even when the correlation coefficient was
zero, was attributed to the loss of accuracy caused by clustering errors. However, the permutation
test had reasonable accuracy. This tendency increased as the correlation coefficient increased, and it
is recommended to use a permutation test to avoid excessive detection of DEGs. Overall, the GMM
tends to have higher detection power and type-one errors than the k-means method.

Table 2 shows the results of comparing the proposed method with the test for gene sets. The
clusters formed by k-means or GMM were considered as gene sets. First, the AUC values for all
methods were above 0.6, indicating that all methods functioned as a method to determine the DEG.
Among them, the proposed method had the highest AUC. Next to that, SAM-GS and ROAST had
good accuracy. GSEA tended to have both high detection power and type-one error. On the other
hand, both SAM-GS and ROAST were low. This indicates that the p-values calculated by GSEA
often take small values, while SAM-GS and ROAST often take large values, and thus are not suitable
for testing at a significance level of 0.05 under this sample size. The proposed method produces the
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Table 4: Type-one error in the proposed method using k-means and the permutation test with increasing sample
size under various correlation coefficients

Sample size ρ = 0 ρ = 0.1 ρ = 0.5 ρ = 0.9
3 : 3 0.361 0.359 0.354 0.360

10 : 10 0.168 0.187 0.219 0.261
20 : 20 0.115 0.116 0.114 0.115
30 : 30 0.046 0.057 0.075 0.110

most stable accuracy.
Table 3 shows the simulation results when genes are correlated but do not follow the same distri-

bution. More specifically, half of the genes in Cluster 1 followed Distribution 1, and the other half
followed Distribution 2. Similarly, half of the genes in Cluster 2 followed Distribution 2, and the other
half followed Distribution 3. Finally, half of the genes in Cluster 3 followed Distribution 3, whereas
the other half followed Distribution 1. It can be seen that the accuracy of the conventional method
does not change significantly. Because this method considers each gene individually, it is believed that
there is no effect on the correlation structure. The results of the other methods were not significantly
different; however, the AUC was generally lower. This may be because the correlation structure is
no longer simple and the clustering accuracy decreases. In addition, unlike the previous simulation,
an increase in the correlation coefficient did not necessarily improve the accuracy in terms of AUC,
detection power, and type-one error. This is also due to changes in the correlation structure. However,
the proposed method using a permutation test is still recommended for DEG detection.

Although the type-one error when using the permutation test was smaller than that of the t-test, it
was still considerable. Therefore, to examine whether the use of the permutation test was appropriate,
we checked whether the type-one error decreased when the sample size was increased. Table 4 lists the
type-one errors for the proposed method using the permutation test as the sample size increases. The
results show that type-one error decreases as the sample size increases for all correlation coefficients.
It can also be seen that the type-one error tends to increase as the correlation coefficient increases, but
it approaches 0.05 as the sample size increases.

4. Example

In the actual data analysis, we applied only the t-test and the method using k-means and permutation
tests, which were determined to be the most useful in terms of the AUC in the simulation, to the
observed microarray data in order to examine the effect of human X-box binding protein-1 (XBP1)
on gene expression (Gomez et al., 2007). Although the actual DEG number is unknown, by ranking
the genes by p values, we calculated the number of genes commonly identified as DEGs when the top
1000, 3000, and 5000 genes out of the 22,283 genes were considered DEGs. The sample size was
three for each group, and the number of clusters for the proposed method was 1000. The results are
summarized in Table 5.

Less than half of all DEGs were determined to be DEGs using each method. Additionally, the
same genes were more likely to be identified as DEGs when the threshold for identifying them as
DEGs increased. We concluded that the number of genes detected by the proposed method signifi-
cantly differed from that detected by the conventional method. This difference should be considered
when performing detection. Another interpretation is that genes commonly identified as DEGs using
these two methods have a very high probability of being DEGs. If the researcher wishes to narrow
the number of DEG candidates to a more precise and smaller number, this may be accomplished by
checking the results of multiple methods.
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Table 5: Number and percentage of genes commonly identified as DEGs in each method

Number of DEGs Number of common DEGs Number of common DEGs/number of DEGs

1000 149 0.149
3000 1079 0.360
5000 2122 0.424

5. Conclusion

We proposed a new method to analyze microarray data to detect DEGs. The proposed method is an
improvement over the test-based method. It can solve the drawbacks of the conventional method, such
as low accuracy due to small sample size and multiplicity of tests. The simulation of the proposed
method was performed under the assumptions that the expression levels followed a normal distribution
and that there was a positive correlation among the genes. In addition, we conducted simulations for
the case in which some genes were correlated but followed different distributions.

The results showed that all methods could detect DEGs in terms of AUC; however, it was neces-
sary to use the proposed method because the conventional method did not work when the significance
level was set at 0.05. Among the proposed methods, those using the t-test or the Wilcoxon rank-sum
test have a high type-one error; therefore, the method using the permutation test is recommended.
Because the method using the permutation test is less affected by sample variance, the p-value is less
likely to become small, even when the assumption of independence is not valid, which is considered
the reason why the type-one error can be controlled. When the accuracy was examined by changing
the correlation coefficient, it was found that the stronger the correlation, the higher the accuracy of the
proposed method, which can be attributed to the improvement in clustering accuracy.

The simulations showed that the method using the permutation test is the most recommended,
even when genes are correlated but follow different distributions. However, unlike the aforementioned
simulations, the accuracy did not increase as the correlation coefficient increased. This indicates that,
even if the correlation becomes more robust, the accuracy of clustering is not likely to improve if
the distribution of the samples is different. However, because such a situation may occur in actual
microarray data, it is necessary to consider ways to cope with it. One way to address this issue is to
change the clustering method. By clustering using correlation coefficients, it was possible to divide
genes that influenced each other into the same cluster.

The actual data analysis showed that the genes detected by the proposed method significantly dif-
fered from those seen by the conventional method. This indicates that the genes likely to be detected
using the proposed method differ from those detected using the conventional method. Unlike simula-
tion data, real data do not always have normality, and the sample size is often small; therefore, it is
difficult to determine whether the conventional t-test can be applied. However, the k-means method
and permutation test can be considered in many cases because of their loose assumptions. Thus, the
proposed method is easy to use.

The proposed method has room for improvement, as various testing and clustering methods can
be applied. In this study, we applied tests that are generally available for a variety of data, but there
are several tests for genes, such as the sequence kernel association test (SKAT) (Michael et al., 2011)
and the adaptive sum of powered score (aSUP) (Pan et al., 2014). Further improvement in accuracy
may be expected by incorporating these tests.
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