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Abstract
Policymakers and educational researchers have grown increasingly interested in the extent to which study

results generalize across different groups of students. Current generalization research in education has largely
focused on the compositional similarity among students based on a set of observable characteristics. However,
generalization is defined differently across various disciplines. While the concept of compositional similarity
is prominent in causal research, generalization among the statistical learning community refers to the extent to
which a model produces accurate predictions across samples and populations. The purpose of this study is to
assess the extent to which concepts related to contextual generalization (based on compositional similarity) are
associated with the ideas related to model generalization (based on accuracy of prediction). We use observational
data from the Programme for International Student Assessment (PISA) 2015 wave as a case study to examine
the conditions under which contextual and model generalization are aligned. We assess the correlations between
statistical measures that quantify compositional similarity and prediction accuracy and discuss the implications
for generalization research.
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1. Introduction

With the proliferation of experimental studies in education, policymakers and practitioners have grown
increasingly interested in understanding the extent to which the results of a study apply or generalize
to a population or target group of students (Tipton and Olsen, 2018). When the goal is to generalize
the results from a sample to a larger population of students, the so-called “narrow to broad” perspec-
tive (Shadish et al., 2002), probability or random sampling is the most powerful tool to facilitate the
generalizability of study results (O’Muircheartaigh and Hedges, 2014). Additionally, if treatment is
randomly assigned within the study, random sampling and random assignment of treatment collec-
tively strengthen the internal and external validity of the study results (Shadish et al., 2002). Alterna-
tively, when the goal is to generalize across samples, or across units of a “similar level” (Shadish et
al., 2002), random assignment or selection is the strongest tool to facilitate this type of generalization.
However, in both cases, random sampling and selection are rare in educational studies (Olsen et al.,
2013) and as a result, much of the current generalization research has focused on methods to improve
generalizations, primarily using propensity score methods (Stuart et al., 2011; Tipton, 2013a). For
studies that focus on generalizations from a sample to a population, the propensity score estimates
the conditional probability of selecting into the sample as a function of a set of observable covariates.
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Importantly, the covariates used in propensity score methods are assumed to moderate both the treat-
ment effect and the sample selection process (Kern et al., 2016). Similarly, when generalizing across
samples, the covariates used in the estimation of propensity scores should affect both the treatment
effect and the selection process. If certain assumptions are met, propensity score methods produce
bias-reduced estimates of treatment impacts that can be used to generalize across student populations
(Tipton and Olsen, 2018).

Propensity score approaches have made an important contribution in improving the contextual
generalizability of experimental results. Specifically, in narrow to broad generalizations, propensity
scores are primarily used to match or reweight students in a sample with those in the population with
the understanding that when the two groups are compositionally similar (based on the observable
treatment effect moderators), treatment effect estimates will be generalizable. A similar assessment
is made when generalizing across samples. However, generalization based on contextual (composi-
tional) similarities is not the only type of generalization of interest in studies. The notion of generaliza-
tion has different meanings in various research fields. For example, in the statistical learning context,
generalizability refers to the extent to which a statistical model can be used to make out-of-sample
predictions (Linden and Yarnold, 2016a, 2016b; Cai et al., 2020). In this context, generalizability is
associated with the predictive accuracy of a model across various samples of students. As another
example, generalization in studies with international large-scale datasets refers to the extent to which
the coefficients of predictive models are all positive or all negative across countries (Marsh et al.,
2015; Marsh, 2016).

Given the differences between how generalizability is defined, an important question is whether
different notions of generalization in the contextual and model framework are associated with each
other. The purpose of this study is to explore the connection between measures of contextual gen-
eralization (based on compositional similarity) and measures of model generalization, the latter of
which refers to statistical models and predictive accuracy across various samples. This exploration
is motivated by two factors. One, contextual generalization and propensity score methods are often
used in studies where causal inference and the estimation of the causal impact of an intervention is the
goal. In contrast, model generalization is related to prediction and the extent to which a fitted model
can be applied across different samples of students or units to produce accurate predictions. Because
causal inference and prediction are generally not discussed in the same context, a goal of this study
is to assess whether a relationship exists between the two frameworks within the context of generaliz-
ability. Two, while both contextual and model generalization are important strands of generalization
research, the concepts related to the former are often not present in studies that focus on the latter;
namely, studies that center around the generalizability of models generally do not include discussions
of contextual generalization. As a result, this study aims to bridge the two frameworks of generaliza-
tion by providing the first empirical evidence of the association (or absence of one) between measures
of contextual and model generalization. If a relationship exists between the two frameworks, this
has important implications for generalization research as it would allow researchers to identify the
conditions under which the results of a study apply across various groups of students.

The article is organized as follows. First, we provide a brief review of the concepts related to con-
textual and model generalization. In the same section, we also discuss the assumptions and existing
measures used to assess each type of generalization (contextual and model) and highlight some im-
portant differences between the goals of each framework. Then, we explore the relationship between
contextual and model generalization using a case study based on a subset of data from the Programme
for International Student Assessment (PISA) 2015 study. PISA is a widely used, publicly available
educational data set that assesses various aspects of 15-year-olds’ educational experiences across a
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sample of countries. Because the empirical example is based on observational data from PISA, our
study differs from prior generalization research in an important way. We deviate from prior general-
ization studies by using an observational data set, in place of an experimental study, as the empirical
example. This was done because PISA provides a rich source of covariate information that can be
used to address a variety of research questions and because PISA is publicly available, the results of
our study may motivate future work on the connection between contextual and model generalization.
However, while our empirical example is based on an international large-scale dataset, the relation-
ship between contextual and model generalization has broader implications for educational research.
In the final section, we conclude with a discussion of these implications in relation to our findings
based on the PISA data.

2. Review of contextual generalizability

In this section, we provide a brief review of contextual generalization. Although the sample to popu-
lation (narrow to broad) framework is the common one of interest in education studies, we center our
review on the sample to sample (units of similar levels) perspective to be consistent with the PISA em-
pirical example. However, extensions of the assumptions and approaches can be made to the narrow
to broad perspective. Our review is based on the causal inference model used to estimate treatment
effects in non-experimental studies (Rosenbaum and Rubin, 1983). In non-experimental or obser-
vational studies, the goal is to estimate an average treatment effect in the presence of self-selection
(non-random selection) into the treatment and comparison groups. In our context, we refer to mem-
bership in a specific country (in PISA) as the equivalent of a “treatment” and assess the contextual
generalizability across individuals in the treatment and comparison countries (groups).

Given this setup, consider a population P in which a sample S of n units are selected. Throughout,
the units in our study refer to students, but they may also represent schools, communities, or aggre-
gates of individuals. For each unit i, we define the binary treatment variable Ti, which is equal to
one if a student is a member of a given country and zero otherwise. We also observe a p-dimensional
column vector of observed pretreatment covariates Xi, whose support is denoted by X. Let τ denote
the parameter of interest in the generalization study, where τ can refer to an average treatment effect
(Rubin, 1974) based on an observable outcome Y or it can refer to a model parameter. Examples
of outcomes include assessment scores and graduation rates. In the sample to sample framework,
when units are randomly assigned to samples, and certain assumptions hold (Tipton, 2013a; Imai and
Ratkovic, 2014), several methods lead to unbiased and generalizable parameter estimates τ̂.

2.1. Propensity score methods

The challenge in many generalization studies in education is that the selection into samples is not
random. This creates a selection bias in parameter estimates since units that select into a sample may
be compositionally different from units that select into different samples. In this case, to make valid
generalizations, model-based methods are needed (Olsen et al., 2013; O’Muircheartaigh and Hedges,
2014). Propensity score methods are a common approach to improve generalizations from nonrandom
samples (Stuart et al., 2011). Propensity score methods were originally developed to address the bias
in treatment effect estimates from observational studies when the units were not randomly assigned
to treatments (Rosenbaum and Rubin, 1983). Propensity scores are the conditional probabilities of
selection into a sample, conditional on the values of a set of observable covariates. Once estimated,
propensity scores can be used to match or reweight a sample to be compositionally similar (on the
observable covariates) to individuals in the comparison sample (or group) (Stuart, 2010). In practice,
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to facilitate the most bias reduction, the covariates used for propensity scores in generalization studies
are variables that moderate both the outcome of interest and selection.

Under the given framework, let π(X) denote the true propensity score given by:

π(X) = Pr(T = 1 | X). (2.1)

Because propensity scores are a function of the covariates X, they serve as unidimensional sum-
maries of the covariate set. Importantly, propensity scores are balancing scores where matching by
propensity scores is equivalent to matching by all the covariates X used in the propensity score model
(Rosenbaum and Rubin, 1983). A common method to estimate the propensity scores is with logistic
regression based on X = (X1, X2, . . . , Xp):

logit (π̂(X)) = log (π̂ (X/1 − π̂(X))) = α0 + α1X1 + · · · + αpXp. (2.2)

2.2. Assumptions for propensity scores

The validity of propensity score-based estimators depends on several assumptions. First, the Stable
Unit Treatment Value Assumption (SUTVA) (Rubin, 1978, 1980, 1990; Tipton, 2013a) for the sample
is required. Under this assumption, the outcomes of each student do not depend on membership in
a specific sample and there is no interference among students across samples. Second, the treatment
assignment must be strongly ignorable (Rosenbaum and Rubin, 1983). Under this assumption, the
parameter τ is conditionally independent of the treatment indicator T , given the propensity scores.
This assumption implies that the covariates X explain all the variation in parameter estimates. Ad-
ditionally, strong ignorability of treatment requires that the true propensity scores be bounded away
from zero and one.

3. Generalizability and propensity scores

3.1. Contextual generalization

If the assumptions for propensity score methods are met, they can be used to produce bias-reduced es-
timates of the parameter of interest. In addition to their use in estimation, matching, and reweighting,
propensity scores have also been used to assess generalization among students of different populations
(Tipton, 2014; Chan, 2017; Tipton and Olsen, 2018). In this framework, contextual generalization is
assessed by examining the extent of compositional similarity among groups of students or schools
based on the propensity score distributions. Note that because propensity scores are univariate sum-
maries of multiple covariates, similarity on the propensity scores is equivalent to similarity in the dis-
tributions of covariates that are used to estimate the propensity scores (Rosenbaum and Rubin, 1983).
Formally, compositional similarity and contextual generalization is equivalent to the condition:

π(X) ⊥ T. (3.1)

Equation (3.1) states that, under contextual generalization, the true propensity scores are independent
of the treatment indicator. Note that this condition is also equivalent to:

(π(X) | T = 1) d
= (π(X) | T = 0) , (3.2)

where the distributions of propensity scores are perfectly balanced among the treatment and control
samples.
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In practice, several statistical measures are available to quantify the extent of contextual general-
ization or compositional similarity. Among these, the generalizability index β, or B-index, represents
the level of “distributional similarity between the propensity scores” of two samples (Tipton, 2014).
The B-index has two important properties. First, it is bounded between zero and one where values
close to one represent stronger compositional similarity. Note that the B-index is equal to one un-
der condition (3.1) where the propensity scores are independent of T . Second, the B-index does not
require any distributional assumptions, so its validity does not depend on the specific assumptions
related to the sample data. These two properties are important as they make the B-index a statistic
that is easy to interpret and flexible to use. Tipton (2014) suggested the following cutoffs to assess the
extent of contextual generalizability: (i) a B-index between 0.9 to 1 suggests that the samples are very
similar on the given set of covariates, (ii) a B-index between 0.8 to 0.9 indicates that while there is
some similarity, some reweighting is needed to derive unbiased parameter estimates from one sample,
(iii) a B-index between 0.5 to 0.8 implies that even with reweighting, there would still be bias and/or
large inflation of standard errors, (iv) a B-index smaller than 0.5 suggests that the two samples are too
different to warrant comparison.

Other measures used to quantify contextual generalization include standardized mean differences
for individual covariates and for the propensity score logits (Stuart et al., 2011) as well as measures of
overlap in the propensity score distributions (Chan, 2021). In this study, we focus on the B-index alone
as a measure of contextual generalization. We do so because the B-index offers both an interpretable
and flexible measure to quantify the compositional similarity between two samples of units. However,
because the alternative measures are based on the same quantities (namely, the propensity scores and
the covariates used in the propensity score models), the assessments of contextual generalizability
should be similar among all the measures.

3.2. Model generalization

Contextual generalization focuses on compositional similarity among samples based on the distribu-
tions of covariates. Model generalization focuses on the extent to which a predictive model fitted
among units in one sample yields accurate predictions of an outcome for another sample. As a re-
sult, model generalization is assessed using measures of predictive accuracy between two samples;
namely, the better the predictive accuracy, the more generalizable the model across various samples
of students or schools. Formally, model generalization requires that:(

X
Y

)
⊥ T. (3.3)

In practice, to assess model generalization, k-fold cross-validation (Grandvalet and Bengio, 2004)
is commonly used. This method repeatedly designates one sample as the training sample and the
holdout 1/k data as a validation sample. k-fold cross-validation, also regarded as rotation estimation,
splits the dataset into k mutually exclusive folds or subsets with approximately equal sample sizes
per subset. The model is then trained iteratively by the training set (usually k–1 folds of the data)
and then validated by the holdout fold. The cross-validation accuracy, in classification settings, can be
computed based on the total amount of correct predictions divided by the sample size of the dataset. To
measure the predictive accuracy, the Root-Mean-Square Error (RMSE) is used. The RMSE represents
the square root of the squared differences between the predicted outcomes generated by the model and
the observed values of the outcome values. The RMSE is given by the square root of the following:

E(Y − E(Y | X))2, (3.4)
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where the expression is the expected value of the squared differences between the observed outcomes
Y and the estimated outcomes E(Y |X) based on the data. If a predictive model is generalizable from
the training dataset to the validation dataset, then the cross-validation RMSE will be relatively small.

3.3. Research questions

Given the differences between contextual and model generalizability, the current study addresses the
following research questions.

1. Are measures of contextual and model generalizability associated with each other? That is, if
two samples are contextually generalizable, does this imply that a model fit to one sample will
generalize to units in the other sample (and have a small RMSE)?

2. Under what conditions, if any, does contextual generalization imply model generalization?

Collectively, the two research questions inform practitioners and policymakers of the conditions under
which two frameworks for generalization are aligned with each other. If the compositional similarity
between two groups is associated with accuracy in predictions, this can have implications for the
choice of analytic approach to use when generalizing parameter estimates across populations.

4. Case study: PISA 2015

To explore the relationship between contextual and model generalization, we use data from the Pro-
gramme for International Student Assessment (PISA) 2015 study. PISA is a widely used publicly
available educational data set that assesses various aspects of 15-year-olds’ education across a sam-
ple of countries. To date, seven waves of PISA data are publicly available, and the 2015 wave PISA
data focuses on science as the learning outcome, which we also use in the current study. The orig-
inal sample size of the PISA 2015 data is N = 519, 334 students, sampled from 72 countries and
economies.

Given the large number of variables and observations among all participating countries, we re-
duced the original size of the data by restricting the focus of our study to 30 countries and to students
(in each country) who were categorized as low socioeconomic status (SES). Our decision to focus on
a subset of the data was motivated by two factors. One, for our statistical analyses, it was essential
to reduce the dimension of the observational data as including all variables significantly impacted the
computational speed in the analyses. Second, we focused on low-SES students (rather than high-SES
students) because researchers of education equity are strongly interested in understanding the factors
that affect academic achievement among these student groups. Note that we also conducted the same
analyses using the subpopulation of high SES students. The results were similar and can be provided
upon request. Students were identified as low-SES using the PISA Economic, Social and Cultural Sta-
tus (ESCS) index in the specified country. Using the subset of low-SES students among 30 countries,
our final analytic sample comprised NS = 48, 903 students.
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Table 1: Covariate description (PISA 2015 data)
Variable Variable abbreviation Variable description

Student-level Covariates a

ESCS ESCS

Index of economic, social and cultural status (a composite
score built by the indicators parental education (PARED),
highest parental occupation (HISEI), and
home possessions (HOMEPOS) including books
in the home via principal component analysis (PCA))

Mother Edu ST005Q01TA

What is the highest level of schooling
completed by your mother?
(1 = ISCED level 3A; 2 = ISCED level 3B, 3C;
3 = ISCED level 2; 4 = ISCED level 1;
5 = She did not complete ISCED level 1)

Father Edu ST007Q01TA

What is the highest level of schooling
completed by your father?
(1 = ISCED level 3A; 2 = ISCED level 3B, 3C;
3 = ISCED level 2; 4 = ISCED level 1;
5 = He did not complete ISCED level 1)

Vocational Edu ISCEDO

Programme orientation (ISCEDO) indicates
whether the programme’s curricular content was general,
pre-vocational or vocational (1 = General; 2 = Pre-Vocational;
3 = Vocational; 4 = Modular)
For the following item: (1 = No, never; 2 = Yes, once;
3 = Yes, twice or more)

Retention PrimaryEdu ST127Q01TA Have you ever repeated a grade? At ISCED 1: primary
education

Retention LowSecEdu ST127Q02TA

Have you ever repeated a grade? At ISCED 2: lower
secondary education
For the following items: How often do you do
these things? (1 = Very often; 2 = Regularly;
3 = Sometimes; 4 = Never or hardly ever)

Freq HaveSciBooks ST146Q02TA Borrow or buy books on broad science topics
Freq GoSciClub ST146Q05TA Attend a science club

Freq SimNaturalSciLab ST146Q06NA Simulate natural phenomena in computer programs virtual labs
Freq SimTechSciLab ST146Q07NA Simulate technical processes in computer programs virtual labs

Freq VisitEcologyWebPage ST146Q08NA Visit web sites of ecology organisations

Freq FollowNewsBlog ST146Q09NA Follow news via blogs and microblogging
The following are numeric variables

Test Anxiety ANXTEST Personality: Test Anxiety (WLE b), derived from
ST118 based on IRT scaling.

Enjoy Teamwork COOPERATE

Collaboration and teamwork dispositions:
Enjoy cooperation (WLE), including answers
to items ST082Q02NA, ST082Q03NA, ST082Q08NA,
and ST082Q12NA.

Value Teamwork CPSVALUE
Collaboration and teamwork dispositions:
Value cooperation (WLE), including answers to items
ST082Q01NA, ST082Q09NA, ST082Q13NA and ST082Q14NA.

Achy Motivat MOTIVAT
Student Attitudes, Preferences and Self-related beliefs:
Achieving motivation (WLE), derived from ST119
based on IRT scaling.

Sch Belonging BELONG Subjective well-being: Sense of Belonging to School (WLE),
derived from ST034 based on IRT scaling.

Num SciClsAWeek ST059Q03TA Number of class periods required per week in science

Num ClsAWeek ST060Q01NA In a normal, full week at school, how many class periods
are you required to attend in total?

Min MathLearnAWeek MMINS Learning time (minutes per week) - Mathematics
Min LearnAWeek TMINS Learning time (minutes per week) - in total

School-level Covariates a The following are numeric variables
Sch Size SCHSIZE School Size (Sum)

Prop ComputerInternet RATCMP2 Proportion of available computers that are connected to the Internet
Staff Short STAFFSHORT Shortage of educational staff (WLE)

Prop CertTcher PROATCE Index proportion of all teachers fully certified

Prop SciTertiaryGrad PROSTMAS Index proportion of science teachers with
ISCED level 5A and a major in science

Num TcherSch TOTAT Total number of all teachers at school
Num SciTcherSch TOTST Total number of science teachers at school

a The covariates were selected using GBM and RF models.
b WLE refers to weighted likelihood estimates (Warm, 1989).
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Table 2: Subsamples of Countries
Grouping criterion Subsamples Description Countries

Geographic region

1 Central & Eastern Europe
Montenegro, Bulgaria, Turkey, Croatia,
Czech Republic, Estonia, Lithuania, Latvia, Poland,
Russian Federation

2 Western Europe Switzerland, Spain, Ireland,
Iceland, Luxembourg, Portugal, Greece, Finland

3 Asia United Arab Emirates (UAE), B-S-J-G (China),
Korea, Chinese Taipei, Hong Kong, Macao

4 Americas Costa Rica, Mexico, Colombia,
Peru, Uruguay, United States

GDP per capita

1 GDP per capita < 10, 000
Colombia, Peru, Montenegro, Bulgaria,
B-S-J-G (China)*,Russian Federation,
Mexico

2 GDP per capita < 15, 000 Turkey, Costa Rica, Croatia, Poland,
Latvia, Lithuania

3 GDP per capita < 20, 000 Uruguay, Estonia, Czech Republic,
Greece, Portugal

4 GDP per capita < 50, 000 Spain, Korea, United Arab Emirates, Hong Kong, Finland

5 GDP per capita > 50, 000 Iceland, United States, Ireland,
Macao, Switzerland, Luxembourg

k-means clustering

1 Low ESCS but high science B-S-J-G (China), Macao, Hong Kong, Chinese Taipei, Costa Rica,
achievement on average Luxembourg, Portugal, Spain, Uruguay, Colombia

2 Low ESCS and low science achievement Bulgaria, Mexico, Montenegro, Peru,
on average Russian Federation, Turkey, United Arab Emirates

3 High ESCS and high science achievement Croatia, Czech Republic, Estonia, Finland,

on average Greece, Iceland, Ireland, Korea, Latvia,
Lithuania, Poland, Switzerland, United States

ESCS refers to the PISA economic, social, and cultural status index. Because of data limitations, the GDP per capita for China was used to
reflect the GDP per capita in the four provinces (B-S-J-G: Beijing, Shanghai, Jiangsu, Guangdong) in China, but the GDP per capita for the
four richer provinces in China could be higher than the GDP per capita at the national level.

5. Data preprocessing

Preliminary analyses revealed that most of the PISA covariates had missing data. However, among
the variables that were used in our statistical analyses, most (90%) had rates of missingness of less
than 10%. Because the identified variables were crucial for the generalization analyses, we performed
missing data imputation using Multiple Imputation by Chained Equations (MICE) (Van Buuren and
Groothuis-Oudshoom, 2010). MICE was chosen for its flexibility in dealing with different types of
variables and it was used for covariates with missing data for each country and economy in the analytic
sample. Note that alternative approaches to MICE for imputation can also be used, but these methods
may depend on different assumptions (Murray, 2018).

5.1. Variable selection

The PISA 2015 study included a rich set of covariates for each participating country and economy.
One of the key assumptions required to facilitate generalizations (of any form) is that the covariates be
moderators of the outcome. As a preliminary analysis, we identified the variables that were significant
predictors (as a result, potential moderators) of the outcome of science achievement. We used random
forest and gradient boosting methods (Freund and Schapire, 1996; Breiman, 2001) to identify the
covariates from the original PISA set that included hundreds of variables at the student, teacher, and
school level. Random forest (RF) is an ensemble machine learning approach that uses classification
and regression trees (CART) (Breiman, 2001) to identify a set of relevant predictors. Similarly, gra-
dient boosting methods (GBM) (Friedman, 2001) use CARTs to build prediction models to rank the
covariates based on the accuracy of predictions. Both methods were used as they can accommodate
high dimensional data and facilitate model interpretability (Guelman, 2012; Natekin and Knoll, 2013;
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Figure 1. Grouping of countries/economies based on k-means clustering using 28 covariates 

 

Note: For this plot, all variables are scaled at the country level. Since more than two dimensions (i.e., 28 covariates) were used to generate the three k-means 

clusters, principal component analysis (PCA) was performed to visualize the clusters (note that the data is standardized before PCA). The axes refer to the first 

two principal components which explain the majority of the variance in the data (x-axis explaining 29.5% of the variance, y-axis explaining 21.4% of the 

variance). 

Figure 1: Grouping of countries/economies based on k-means clustering using 28 covariates.

Taieb and Hyndman, 2014; Zhang and Haghani, 2015). Using the combination of RF and GBM, we
identified 28 covariates that served as potential outcome moderators. Of these, 21 were at the student
level and 7 were at the school level. A description of the variables can be found in Table 1. In the
next section, we describe how the covariates were used to construct subsamples of the countries and
compute statistics for contextual generalization.

5.2. Subsamples of countries

Since the current study involves multiple countries, we organized our analysis and discussion of con-
textual and model generalization among three groups based on: (i) geographic region, (ii) GDP per
capita and (iii) k-means clustering. Because the variability among countries can affect the assessment
of generalization and pose a challenge in identifying trends, the purpose of the groups is to compare
measures of generalization among smaller (and potentially more homogenous) subsets of countries.
Note that our criteria for constructing the groups are a subset of possible approaches. Alternative
groups can be based on similarities in education systems and population size.

Table 2 lists the three main groups of the 30 countries and economies based on the three criteria.
Within each group, we identified multiple subsamples of countries. For the subsample based on
geographic region (first row), we used a coarse grouping method based on the continents, which
created four main subsamples of countries. For the second approach based on GDP per capita (second
row), we created five subsamples based on ranges that quantified the wealth of the countries. Note that
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Figure 2. Description of clusters from k-means clustering subgroup 

 
 

Note: ESCS refers to the Economic, Social and Cultural Status. In this plot, ESCS and science achievement are based on the original scale.  

Figure 2: Description of clusters from k-means clustering subgroup.

the 2015 GDP per capita used in this approach are in current US dollars from the World Bank, updated
as of October 2019 (World Bank, 2019). The third grouping method was based on the statistical
method of k-means clustering. The k-means clustering method is an unsupervised learning technique
used to group a set of observations based on a pre-specified distance metric (Everitt and Hothorn,
2011). Given a set of p continuous variables, a common metric used in k-means is the weighted
Euclidean distance given by:

de
i,i′ =

√√ p∑
h=1

wh (Xih − Xi′h)2, (5.1)

where a Xih, Xi′h is the hth covariate for units i and i′ and wh is the weight assigned to the covariate.
If wh = 1, the distance metric in (5.1) is the Euclidean distance. If the covariate set includes both
categorical and continuous variables, an alternative distance metric is based on the Gower (1971)
measure of similarity:

dg
ii′ =

p∑
h=1

wii′hdii′h/

p∑
h=1

wii′h, (5.2)
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Figure 3. Types of linear outcome models used for PISA 2015 data 

 

Note: LM refers to linear model. 

Figure 3: Types of linear outcome models used for PISA 2015 data.

where dii′h is the similarity between units i and i′ for covariate Xh. For categorical variables, the
similarity dii′h = 1 if the two units have the same value and 0 otherwise. For continuous variables,
the similarity dii′h is generally based on a standardized difference (Tipton, 2013b).

To perform k-means clustering, we used the covariates in Table 1 that were significantly predictive
of the science achievement outcome. The final row of Table 2 and the plot in Figure 1 shows the
three resulting clusters (subsamples) of countries under the k-means approach. To assess the types
of countries that were placed into each cluster (subsample), Figure 2 shows the average ESCS and
science achievement score by cluster. ESCS refers to the PISA economic, social, and cultural status
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index. Note that Figure 2 plots ESCS and science achievement as the latter was the main outcome of
PISA 2015 and we were interested in trends in science achievement scores based on various ESCS
values. Figure 2 suggests that most countries in the second cluster had high values of ESCS (high
SES) and high science achievement scores while most countries in cluster 3 had low values of ESCS
(low SES) but high science achievement scores. There was notably more variability in science and
ESCS values among the countries in cluster 1. However, with the exception of the Russian Federation,
most countries in cluster 1 had comparatively lower science achievement scores.

6. Assessing the relationship between contextual and model generalization with
PISA

Using the 30 countries and three main groups (by geographic region, GDP, and k-means clustering),
we addressed the first research question by examining the extent to which contextual generalizability
was associated with model generalizability. Contextual generalizability refers to the extent to which
countries in the same subsample (for example, Montenegro and Bulgaria in the geographic group)
are compositionally similar based on a set of covariates. Thus, we consider the “treatment” to be
membership in a country within a subsample and the comparison as membership in the other countries
in the same subsample. We used the B-index (Tipton, 2014) to quantify the contextual generalizability
and the values of the index are based on the same 28 covariates used in the k-means clustering (Table
1). To assess model generalization, we fit a series of 10 models, of which four were linear regression
models and six were multilevel models using science achievement as the outcome. The multilevel
models were specified based on students (Level 1) nested within schools (Level 2). Although these 10
models are only a subset of the possible outcome models, we included them as examples of the types
of regression models that may be used. Additionally, we examined 10 different models to determine
whether the measures of model generalization varied and depended on the specific approach used.
Model generalization was assessed via k-fold cross-validation and the RMSE was used to quantify
the predictive accuracy. Within each subsample, the RMSE was computed by training the model on
one country and applying it to another country. Figures 3 and 4 provide visuals of the linear and
multilevel models, respectively, and the covariates used to predict the given outcome. In both figures,
the covariates are given in the left columns and the outcome, science achievement, is given in the far
right.

We assessed the relationship between contextual and model generalization in the following way.
We computed values of the B-index and RMSE using an individual to subsample of countries ap-
proach. Under this method, generalization is assessed between a single country and the remaining
countries in the subsample. Thus, to assess contextual generalization, the B-index is computed by
comparing the propensity score distributions between students of a single country with students of
the remaining countries in the subsample. Similarly, with model generalization, the model is trained
to all countries but one in a subsample and it is validated using the holdout country (Grandvalet and
Bengio, 2004).

To determine whether there is a relationship between contextual and model generalization, we
computed correlations between the B-indices and RMSEs. Because a higher B-index implies stronger
contextual generalization while a lower RMSE is associated with stronger model generalization, we
expect that a significant negative correlation between the two measures would suggest an alignment
between the two types of generalization.
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Figure 4. Types of multilevel outcome models used for the PISA 2015 data 

 

 

Note: MLM refers to multilevel model. 

Figure 4: Types of multilevel outcome models used for the PISA 2015 data.

7. Results

In this section, we discuss the results from the contextual and model generalization analyses. For
the sake of parsimony, we summarize the overall findings from the 90 combinations of B-index and
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Table 3: Average correlations between B-index and RMSE for linear regression models

Geographic region GDP per capita k−means
All Models −0.17 −0.16 0.24∗

LM Model 1 −0.19 −0.07 0.29
LM Model 2 −0.29 −0.20 0.06
LM Model 3 −0.08 −0.19 0.32
LM Model 4 −0.12 −0.18 0.34

Note: ***p < 0.001, **p < 0.01, *p < 0.05. The p values for all models have been corrected for multiple hypothesis
testing.

RMSE computations (30 countries × 3 main groups). We center our discussion around three main
trends: (i) values in the B-index for contextual generalization among the countries in each subsample,
(ii) values of the RMSE for model generalization among the subsamples and, (iii) the correlation
between values of the B-index and RMSE. In the following section, we begin with the values of the
contextual and model generalization statistics for the linear regression case.

7.1. Contextual and model generalization - linear regression

The results suggest that the B-indices that describe contextual generalization varied among the three
main groups of countries. When grouped by geographic region, the B-indices were highest (B-index
ranging from 0.49 to 0.78) for the countries in Western Europe and in the Central and Eastern Euro-
pean subsample. Note, however, that while the values were considered highest for these two subsam-
ples, the range from 0.49 to 0.78 suggests moderate compositional similarity at best (Tipton, 2014).
Thus, when grouped by geographic region, most countries in the subsample were less composition-
ally similar based on the potential outcome moderators. When grouped by GDP per capita, there
was no discernible pattern among the values in each subsample with the exception that countries with
high GDP per capita generally had small values of the B-index. This suggests that there was less
compositional similarity among countries grouped by GDP. In the k-means clustering group, the B-
indices were highest (B-index > 0.50) among members in cluster 2, which included countries that had
both high ESCS index values and high science achievement scores. Overall, geographic proximity
accounted for some of the compositional similarity or contextual generalization among the sample of
30 countries, but there was not a single method of grouping that was associated with consistently high
values in the B-index.

We analyzed the values of the RMSE for model generalization in the same framework. As men-
tioned, we fit 10 models on the subsamples, of which four were linear regression models. When
grouped by geographic region, the patterns of cross-validation RMSEs were similar overall across the
four models. Countries in the Americas had the lowest RMSE values across the four models and as
a result, these countries had the strongest generalizability in model predictions. In contrast, countries
in Asia had the lowest level of model generalization with the highest values in RMSE. When grouped
by GDP per capita, the countries with the lowest GDP had the lowest RMSEs and hence, the strongest
model generalizability. This is consistent with the trends in the k-means group in which countries that
had the lowest ESCS index values and lowest science achievement scores had the highest extent of
model generalization.

An important question is how the values of the B-index for contextual generalization compared
with the values of the RMSE for model generalization when fitting predictive models based on lin-
ear regression. Table 3 provides the overall correlations between the B-indices and RMSE values in
each of the three main groups. The first row provides the average correlation across all the models.
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Table 4: Average correlations between B-index and RMSE for multilevel linear regression models

Geographic region GDP per capita k−means
All Models −0.23∗ −0.26∗∗ 0.24∗∗

MLM Model 1 −0.18 −0.26 0.17
MLM Model 2 −0.20 −0.27 0.19
MLM Model 3 −0.31 −0.22 0.39
MLM Model 4 −0.29 −0.30 0.41
MLM Model 5 −0.19 −0.27 0.17
MLM Model 6 −0.21 −0.27 0.16

Note: ***p < 0.001, **p < 0.01, *p < 0.05. The p values for all models have been corrected for multiple hypothesis
testing.

These were computed by taking the average of each model by country combination across the sub-
samples within each group. Because we assessed the statistical significance of the correlations across
multiple combinations, we applied a Benjamini-Hochberg correction to the p-values of the correla-
tions (Benjamini and Hochberg, 1995). Table 3 illustrates that the correlations between the B-indices
and RMSE were negative for some models and groups, while the values were positive in others. A
negative correlation between the B-index and RMSE implies some degree of alignment between con-
textual and model generalization. The results from Table 3 suggest that among the given four models
and three main groups, there was inconsistent evidence of alignment so that the presence of strong
compositional similarity on covariates did not necessarily imply generalization in model predictions.
Additionally, none of the correlations, with the exception of the average correlation under k-means, is
statistically significant. Interestingly, the correlations for all models were negative in both the group
based on geographic region and GDP per capita, but they were all positive under k-means. Thus,
with respect to alignment between the two definitions of generalization, the extent of alignment in
contextual and model generalization when comparing the individual to remaining countries in the
subsamples is mixed.

7.2. Contextual and model generalization - multilevel linear regression

In this section, we assess whether the association between contextual and model generalization de-
pends on the type of model. In addition to the four linear regression models, we fit six multilevel
models in which student data was nested within schools in each participating country. The models are
depicted in Figure 4. Like the linear regression case, we assessed contextual and model generalization
by referring to individual countries in the subsamples as “treatment” and the remaining countries as
the comparison.

We first analyzed the trends in B-index and RMSE values. Because the propensity scores were
estimated using the same covariates and countries in each subsample, the B-index values were the
same as in the linear regression cases. As a result, we focus on the trends among RMSE values in the
subsamples. When grouped by geographic region, the average RMSE varied across the subsamples
with some of the smallest RMSE values (implying high model generalization) seen in the Americas
and Eastern European countries. This trend was consistent across the six multilevel models. When
grouped by GDP per capita, there was notably more variability in RMSE values though the smallest
values were largely seen in the low GDP subsample. Finally, when grouped by k-means, RMSE
values also varied considerably across clusters, but countries in the high ESCS index and high science
achievement scores had the lowest RMSEs overall, implying strongest model generalization.

Using the estimated B-index and RMSE values for the multilevel models, we estimated the cor-
relations between the two measures. Table 4 shows the correlations for the six models and three
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main groups of countries. The first row provides the average correlation across the multilevel models,
which were computed in a similar way as the values in the linear regression models. Interestingly,
the correlations for all models were negative but insignificant when countries were grouped by geo-
graphic region and GDP per capita. In contrast, they were all positive (but still insignificant) when
countries were grouped by k-means. Additionally, only the average correlations across all groups
were significant. This suggests that the empirical evidence for alignment between contextual and
model generalization, when generalizing in the individual country to remaining countries framework
(within subsamples), is inconsistent for the multilevel models, which was also the case for the linear
regression models.

8. Discussion

The goal of this application to the PISA 2015 data was to assess the extent to which concepts of
contextual generalization aligned with concepts associated with model generalization. The analyses
above sought to address this question by focusing on three main groups of countries from the data
set. Within each group, we created subsamples of countries to base our generalization assessments.
The results suggest two main implications. First, the results are somewhat mixed with respect to
an alignment between contextual and model generalization. While the correlations between the B-
index and RMSE were largely negative among the geographic region and GDP groups, few were
significant and the correlations were all positive when countries were grouped by k-means. While not
explored in the current study, generalization analyses suggest that the association between contextual
and model generalization may be stronger with “local” generalizations between pairs of countries,
rather than between a single country and a subsample of countries. A second implication is that while
the type of model potentially plays a role, the magnitude of the correlations in the two cases (linear
and multilevel) suggests that the conditions for alignment may not necessarily depend on it. This was
seen in the comparable values of the correlations between the linear and multilevel cases in Tables
3 and 4. However, this should be interpreted with caution as the correlations given in the tables are
based on averages and the cross-validation RMSEs depend on the specific training and validation data
sets.

9. Conclusion

Generalization research continues to play an important role in informing educational research as pol-
icymakers and practitioners have grown increasingly interested in identifying approaches and best
practices to support populations of students. Because generalization is defined and assessed differ-
ently across various disciplines, the current study sought to assess the extent to which two definitions
of generalizability were aligned. This study focused on the relationship between contextual and model
generalization that, at a broad level, relates to the relationship between causal inference and prediction.
This connection, if present, is important in several ways. One, if compositional similarity was related
to model and predictive accuracy, then precise estimates of parameters of interest can be derived for
various populations of students or individuals. Two, if a relationship exists between contextual and
model generalization, prediction can be used to derive parameter estimates for students or individuals
not sampled in a study. This can have implications for ways to handle missing data. Finally, if contex-
tual and model generalization are aligned, this relationship can potentially facilitate causal inference
across multiple populations of students, particularly when a model that is used to derive precise causal
estimates can be applied in various groups of individuals.

The results of our study suggest that contextual and model generalization are potentially aligned,
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but the results are inconsistent. Because the current study focused on generalizations from individ-
ual to subsamples of countries, the results suggest that any potential alignment between contextual
and model generalization is difficult to observe in this perspective. This finding may not necessar-
ily be surprising as model generalization is dependent on the specific samples used in the training
set. However, the empirical evidence that an alignment between the two definitions of generalization
potentially exists is useful. For researchers that use model-based methods for statistical inference,
the results of this study can inform ways of deriving inference across different samples of students,
particularly when data on potential outcome moderators is available. Future research should explore
whether the empirical evidence of alignment is stronger in other perspectives of generalization, such
as sample to population or population to sample (Shadish et al., 2002). If found, the connection
between contextual and model generalization may inform both generalization research on program
impacts across local communities and the development of local policy based on the results of these
generalization studies.
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