DOI QR코드

DOI QR Code

Investigation of Antimicrobial Compounds Produced by Endolichenic Fungi in Different Culture Media

  • Jaycee Augusto G. Paguirigan (Korean Lichen Research Institute, Sunchon National University) ;
  • Eunah Jeong (College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University) ;
  • Kyo Bin Kang (College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University) ;
  • Jae-Seoun Hur (Korean Lichen Research Institute, Sunchon National University) ;
  • Wonyong Kim (Korean Lichen Research Institute, Sunchon National University)
  • 투고 : 2024.06.06
  • 심사 : 2024.07.24
  • 발행 : 2024.10.01

초록

Continuous use of synthetic fungicides has led to explosive emergence of fungicide-resistant microbes. Therefore, there are urgent needs for environmentally friendly antimicrobial agents with novel modes of action. This study investigated endolichenic fungi (ELF) as a source of antimicrobial compounds against various plant pathogens. We utilized an One Strain MAny Compounds (OSMAC) approach to enhance the chemical diversity of fourteen ELF. This involved cultivation of ELF in four growth media and subsequently assessing antimicrobial activities of culture extracts. Nearly half of the culture extracts exhibited antimicrobial activity against a Gram-positive bacterium, but showed minimal activity against Gram-negative bacteria tested. Notably, culture extracts from two ELF, Chaetomium globosum and Nodulisporium sp., demonstrated significant inhibitory effects against plant pathogenic fungi. LC-MS/MS-based metabolome profiling confirmed the presence of known bioactive compounds like cyclic dipeptides and chaetoglobosins. These findings highlight the effectiveness of combining OSMAC and metabolomics for identifying antimicrobial agents for agricultural use.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2022R1C1C2004118 to W.K.) and the Korean National Research Resource Center Program (No. NRF-2017M3A9B8069471 and NRF-2021K2A9A1A06086000 to J.-S.H.). We thank the Korean Agricultural Culture Collection (KACC) for providing the phytopathogenic bacteria and fungi.

참고문헌

  1. Agrawal, S., Deshmukh, S. K., Reddy, M. S., Prasad, R. and Goel, M. 2020. Endolichenic fungi: a hidden source of bioactive metabolites. S. Afr. J. Bot. 134:163-186.
  2. Arnold, A. E., Miadlikowska, J., Higgins, K. L., Sarvate, S. D., Gugger, P., Way, A., Hofstetter, V., Kauff, F. and Lutzoni, F. 2009. A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst. Biol. 58:283-297.
  3. Basnet, B. B., Chen, B., Suleimen, Y. M., Ma, K., Guo, S., Bao, L., Huang, Y. and Li, H. 2019. Cytotoxic secondary metabolites from the endolichenic fungus Hypoxylon fuscum. Planta Med. 85:1088-1097.
  4. Bebber, D. P., Holmes, T. and Gurr, S. J. 2014. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 23:1398-1407.
  5. Boustie, J. and Grube, M. 2005. Lichens: a promising source of bioactive secondary metabolites. Plant Genet. Resour. 3:273-287.
  6. Brasier, C. M. 2008. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 57:792-808.
  7. Brooks, D. R., Hoberg, E. P., Boeger, W. A. and Trivellone, V. 2022. Emerging infectious disease: an underappreciated area of strategic concern for food security. Transbound. Emerg. Dis. 69:254-267.
  8. Cheon, D.-M., Jang, D. S., Kim, H. Y., Choi, K. S. and Choi, S. K. 2013. Detection of antifungal endolichenic fungi and antifungal compound. Korean J. Microbiol. 49:165-171.
  9. Chitolina, G. M., Silva-Junior, G. J., Feichtenberger, E., Pereira, R. G. and Amorim, L. 2021. Distribution of Alternaria alternata isolates with resistance to quinone outside inhibitor (QoI) fungicides in Brazilian orchards of tangerines and their hybrids. Crop Prot. 141:105493.
  10. da Silva, R. R., Wang, M., Nothias, L.-F., van der Hooft, J. J. J., Caraballo-Rodriguez, A. M., Fox, E., Balunas, M. J., Klassen, J. L., Lopes, N. P. and Dorrestein, P. C. 2018. Propagating annotations of molecular networks using in silico fragmentation. PLoS Comput. Biol. 14:e1006089.
  11. Dou, Y., Wang, X., Jiang, D., Wang, H., Jiao, Y., Lou, H. and Wang, X. 2014. Metabolites from Aspergillus versicolor, an endolichenic fungus from the lichen Lobaria retigera. Drug Discov. Ther. 8:84-88.
  12. Du, H.-F., Sun, T.-T., Tong, X.-Y., Ren, J., Zhang, Y.-H., Shaw, P.-C., Luo, D.-Q. and Cao, F. 2024. Antifungal activity and mechanism of chaetoglobosin D against Alternaria alternata in tomato postharvest storage. Postharvest Biol. Technol. 214:113014.
  13. Feuerer, T. and Hawksworth, D. 2007. Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajan's floristic regions. Biodivers. Conserv. 16:85-98.
  14. Fu, T., Han, J.-H., Shin, J.-H., Song, H., Ko, J., Lee, Y.-H., Kim, K.-T. and Kim, K. S. 2021. Homeobox transcription factors are required for fungal development and the suppression of host defense mechanisms in the Colletotrichum scovillei-pepper pathosystem. mBio 12:e01620-21.
  15. Gorlenko, C. L., Kiselev, H. Y., Budanova, E. V., Zamyatnin, A. A. Jr. and Ikryannikova, L. N. 2020. Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: new heroes or worse clones of antibiotics? Antibiotics 9:170.
  16. He, J.-W., Chen, G.-D., Gao, H., Yang, F., Li, X.-X., Peng, T., Guo, L.-D. and Yao, X.-S. 2012. Heptaketides with antiviral activity from three endolichenic fungal strains Nigrospora sp., Alternaria sp. and Phialophora sp. Fitoterapia 83:1087-1091.
  17. Kannangara, B. T. S. D. P., Rajapaksha, R. S. C. G. and Paranagama, P. A. 2009. Nature and bioactivities of endolichenic fungi in Pseudocyphellaria sp., Parmotrema sp. and Usnea sp. at Hakgala montane forest in Sri Lanka. Lett. Appl. Microbiol. 48:203-209.
  18. Kealey, J. T., Craig, J. P. and Barr, P. J. 2021. Identification of a lichen depside polyketide synthase gene by heterologous expression in Saccharomyces cerevisiae. Metab. Eng. Commun. 30:e00172.
  19. Kellogg, J. J. and Raja, H. A. 2017. Endolichenic fungi: a new source of rich bioactive secondary metabolites on the horizon. Phytochem. Rev. 16:271-293.
  20. Kim, W., Liu, R., Woo, S., Kang, K. B., Park, H., Yu, Y. H., Ha, H.-H., Oh, S.-Y., Yang, J. H., Kim, H., Yun, S.-H. and Hur, J.-S. 2021. Linking a gene cluster to atranorin, a major cortical substance of lichens, through genetic dereplication and heterologous expression. mBio 12:e01111-21.
  21. Kumar, N. S., Mohandas, C. and Nambisan, B. 2013. Purification of an antifungal compound, cyclo(L-Pro-D-Leu) for cereals produced by Bacillus cereus subsp. thuringiensis associated with entomopathogenic nematode. Microbiol. Res. 168:278-288.
  22. Lee, S. H., Oh, Y. T., Lee, D.-Y., Cho, E., Hwang, B. S. and Jeon, J. 2022. Large-scale screening of the plant extracts for antifungal activity against the plant pathogenic fungi. Plant Pathol. J. 38:685-691.
  23. Li, X.-B., Zhou, Y.-H., Zhu, R.-X., Chang, W.-Q., Yuan, H.-Q., Gao, W., Zhang, L.-L., Zhao, Z.-T. and Lou, H.-X. 2015. Identification and biological evaluation of secondary metabolites from the endolichenic fungus Aspergillus versicolor. Chem. Biodivers. 12:575-592.
  24. Lin, L.-B., Gao, Y.-Q., Han, R., Xiao, J., Wang, Y.-M., Zhang, Q., Zhai, Y.-J., Han, W.-B., Li, W.-L. and Gao, J.-M. 2021. Alkylated salicylaldehydes and prenylated indole alkaloids from the endolichenic fungus Aspergillus chevalieri and their bioactivities. J. Agric. Food Chem. 69:6524-6534.
  25. Liu, R., Paguirigan, J. A., Hur, J.-S. and Kim, W. 2024. Cercosporamide, a polyketide-derived fungal metabolite, serves as an antifungal agent against phytopathogenic fungi. Mycoscience 65:19-27.
  26. Nguyen, K.-H., Chollet-Krugler, M., Gouault, N. and Tomasi, S. 2013. UV-protectant metabolites from lichens and their symbiotic partners. Nat. Prod. Rep. 30:1490-1508.
  27. Nothias, L.-F., Petras, D., Schmid, R., Duhrkop, K., Rainer, J., Sarvepalli, A., Protsyuk, I., Ernst, M., Tsugawa, H., Fleischauer, M., Aicheler, F., Aksenov, A. A., Alka, O., Allard, P.-M., Barsch, A., Cachet, X., Caraballo-Rodriguez, A. M., Da Silva, R. R., Dang, T., Garg, N., Gauglitz, J. M., Gurevich, A., Isaac, G., Jarmusch, A. K., Kamenik, Z., Kang, K. B., Kessler, N., Koester, I., Korf, A., Le Gouellec, A., Ludwig, M., Martin, H. C., McCall, L.-I., McSayles, J., Meyer, S. W., Mohimani, H., Morsy, M., Moyne, O., Neumann, S., Neuweger, H., Nguyen, N. H., Nothias-Esposito, M., Paolini, J., Phelan, V. V., Pluskal, T., Quinn, R. A., Rogers, S., Shrestha, B., Tripathi, A., van der Hooft, J. J. J., Vargas, F., Weldon, K. C., Witting, M., Yang, H., Zhang, Z., Zubeil, F., Kohlbacher, O., Bocker, S., Alexandrov, T., Bandeira, N. and Wan, M. 2020. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17:905-908.
  28. Oksman-Caldentey, K.-M. and Inze, D. 2004. Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci. 9:433-440.
  29. Padhi, S., Masi, M., Cimmino, A., Tuzi, A., Jena, S., Tayung, K. and Evidente, A. 2019. Funiculosone, a substituted dihydroxanthene-1,9-dione with two of its analogues produced by an endolichenic fungus Talaromyces funiculosus and their antimicrobial activity. Phytochemistry 157:175-183.
  30. Padhi, S., Masi, M., Panda, S. K., Luyten, W., Cimmino, A., Tayung, K. and Evidente, A. 2020. Antimicrobial secondary metabolites of an endolichenic Aspergillus niger isolated from lichen thallus of Parmotrema ravum. Nat. Prod. Res. 34:2573-2580.
  31. Paguirigan, J. A., Liu, R., Im, S. M., Hur, J.-S. and Kim, W. 2022. Evaluation of antimicrobial properties of lichen substances against plant pathogens. Plant Pathol. J. 38:25-32.
  32. Paranagama, P. A., Wijeratne, E. M. K., Burns, A. M., Marron, M. T., Gunatilaka, M. K., Arnold, A. E. and Gunatilaka, A. A. L. 2007. Heptaketides from Corynespora sp. inhabiting the cavern beard lichen, Usnea cavernosa: first report of metabolites of an endolichenic fungus. J. Nat. Prod. 70:1700-1705.
  33. Ristaino, J. B., Anderson, P. K., Bebber, D. P., Brauman, K. A., Cunniffe, N. J., Fedoroff, N. V., Finegold, C., Garrett, K. A., Gilligan, C. A., Jones, C. M., Martin, M. D., MacDonald, G. K., Neenan, P., Records, A., Schmale, D. G., Tateosian, L. and Wei, Q. 2021. The persistent threat of emerging plant disease pandemics to global food security. Proc. Natl. Acad. Sci. U. S. A. 118:e2022239118.
  34. Salman, M., Tariq, A., Mustafa, G., Javed, M. R., Naheed, S. and Qamar, S. A. 2022. Cyclo(L-Leucyl-L-Prolyl) from Lactobacillus coryniformis BCH-4 inhibits the proliferation of Aspergillus flavus: an in vitro to in silico approach. Arch. Microbiol. 204:267.
  35. Santiago, K. A. A., Edrada-Ebel, R., dela Cruz, T. E. E., Cheow, Y. L. and Ting, A. S. Y. 2021. Biodiscovery of potential antibacterial diagnostic metabolites from the endolichenic fungus Xylaria venustula using LC-MS-based metabolomics. Biology 10:191.
  36. Suryanarayanan, T. S., Govindarajulu, M. B., Rajamani, T., Tripathi, M. and Joshi, Y. 2017. Endolichenic fungi in lichens of Champawat district, Uttarakhand, northern India. Mycol. Prog. 16:205-211.
  37. Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., Kanazawa, M., VanderGheynst, J., Fiehn, O. and Arita, M. 2015. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12:523-526.
  38. U'Ren, J. M. 2011. Host-, geographic-, and ecological specificity of endophytic and endolichenic fungal communities. Ph.D. thesis. University of Arizona, Tucson, AZ, USA.
  39. van Santen, J. A., Poynton, E. F., Iskakova, D., McMann, E., Alsup, T. A., Clark, T. N., Fergusson, C. H., Fewer, D. P., Hughes, A. H., McCadden, C. A., Parra, J., Soldatou, S., Rudolf, J. D., Janssen, E. M.-L., Duncan, K. R. and Linington, R. G. 2022. The Natural Products Atlas 2.0: a database of microbially-derived natural products. Nucleic Acids Res. 50:D1317-D1323.
  40. Venkatasubramanian, P., Balasubramani, S. P., Nandi, S. K. and Tariq, M. 2018. Bioactive metabolite profiling for identification of elite germplasms: a conservation strategy for threatened medicinal plants. Curr. Sci. 114:554-561.
  41. Wang, F., Saito, S., Michailides, T. J. and Xiao, C.-L. 2022. Fungicide resistance in Alternaria alternata from blueberry in California and its impact on control of Alternaria rot. Plant Dis. 106:1446-1453.
  42. Wang, M., Carver, J. J., Phelan, V. V., Sanchez, L. M., Garg, N., Peng, Y., Nguyen, D. D., Watrous, J., Kapono, C. A., Luzzatto-Knaan, T., Porto, C., Bouslimani, A., Melnik, A. V., Meehan, M. J., Liu, W.-T., Crusemann, M., Boudreau, P. D., Esquenazi, E., Sandoval-Calderon, M., Kersten, R. D., Pace, L. A., Quinn, R. A., Duncan, K. R., Hsu, C.-C., Floros, D. J., Gavilan, R. G., Kleigrewe, K., Northen, T., Dutton, R. J., Parrot, D., Carlson, E. E., Aigle, B., Michelsen, C. F., Jelsbak, L., Sohlenkamp, C., Pevzner, P., Edlund, A., McLean, J., Piel, J., Murphy, B. T., Gerwick, L., Liaw, C.-C., Yang, Y.-L., Humpf, H.-U., Maansson, M., Keyzers, R. A., Sims, A. C., Johnson, A. R., Sidebottom, A. M., Sedio, B. E., Klitgaard, A., Larson, C. B., Boya P, C. A., Torres-Mendoza, D., Gonzalez, D. J., Silva, D. B., Marques, L. M., Demarque, D. P., Pociute, E., O'Neill, E. C., Briand, E., Helfrich, E. J. N., Granatosky, E. A., Glukhov, E., Ryffel, F., Houson, H., Mohimani, H., Kharbush, J. J., Zeng, Y., Vorholt, J. A., Kurita, K. L., Charusanti, P., McPhail, K. L., Nielsen, K. F., Vuong, L., Elfeki, M., Traxler, M. F., Engene, N., Koyama, N., Vining, O. B., Baric, R., Silva, R. R., Mascuch, S. J., Tomasi, S., Jenkins, S., Macherla, V., Hoffman, T., Agarwal, V., Williams, P. G., Dai, J., Neupane, R., Gurr, J., Rodriguez, A. M. C., Lamsa, A., Zhang, C., Dorrestein, K., Duggan, B. M., Almaliti, J., Allard, P.-M., Phapale, P., Nothias, L.-F., Alexandrov, T., Litaudon, M., Wolfender, J.-L., Kyle, J. E., Metz, T. O., Peryea, T., Nguyen, D.-T., VanLeer, D., Shinn, P., Jadhav, A., Muller, R., Waters, K. M., Shi, W., Liu, X., Zhang, L., Knight, R., Jensen, P. R., Palsson, B. O., Pogliano, K., Linington, R. G., Gutierrez, M., Lopes, N. P., Gerwick, W. H., Moore, B. S., Dorrestein, P. C. and Bandeira, N. 2016. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34:828-837.
  43. Xie, F., Luan, X.-Y., Gao, Y., Xu, K. and Lou, H.-X. 2020. Cytotoxic heptaketides from the endolichenic fungus Ulospora bilgramii. J. Nat. Prod. 83:1623-1633.
  44. Yan, P.-S., Song, Y., Sakuno, E., Nakajima, H., Nakagawa, H. and Yabe, K. 2004. Cyclo(L-Leucyl-L-Prolyl) produced by Achromobacter xylosoxidans inhibits aflatoxin production by Aspergillus parasiticus. Appl. Environ. Microbiol. 70:7466-7473.
  45. Yang, C., Xiao, S., Yan, S., Zhang, M., Cai, Q., Fu, S. and Meng, Q. 2019a. New phomalone derivatives from the endolichenic fungus Cochliobolus kusanoi in Ny-Alesund Arctic. J Chin. Chem. Soc. 66:325-329.
  46. Yang, J. H., Oh, S.-Y., Kim, W. and Hur, J.-S. 2022. Endolichenic fungal community analysis by pure culture isolation and metabarcoding: a case study of Parmotrema tinctorum. Mycobiology 50:55-65.
  47. Yang, J. H., Oh, S.-Y., Kim, W., Woo, J.-J., Kim, H. and Hur, J.-S. 2021. Effect of isolation conditions on diversity of endolichenic fungal communities from a foliose lichen, Parmotrema tinctorum. J. Fungi 7:335.
  48. Yang, L.-N., He, M.-H., Ouyang, H.-B., Zhu, W., Pan, Z.-C., Sui, Q.-J., Shang, L.-P. and Zhan, J. 2019b. Cross-resistance of the pathogenic fungus Alternaria alternata to fungicides with different modes of action. BMC Microbiol. 19:205.
  49. Yuan, C., Ding, G., Wang, H.-Y., Guo, Y.-H., Shang, H., Ma, X.-J. and Zou, Z.-M. 2017. Polyketide-terpene hybrid metabolites from an endolichenic fungus Pestalotiopsis sp. BioMed Res. Int. 2017:6961928.
  50. Yuan, C., Wang, H.-Y., Wu, C.-S., Jiao, Y., Li, M., Wang, Y.-Y., Wang, S.-Q., Zhao, Z.-T. and Lou, H.-X. 2013. Austdiol, fulvic acid and citromycetin derivatives from an endolichenic fungus, Myxotrichum sp. Phytochem. Lett. 6:662-666.
  51. Zhang, W., Ran, Q., Li, H. and Lou, H. 2024. Endolichenic fungi: a promising medicinal microbial resource to discover bioactive natural molecules: an update. J. Fungi 10:99.
  52. Zhang, Y., Zhu, H., Ye, Y. and Tang, C. 2021. Antifungal activity of chaetoviridin A from Chaetomium globosum CEF-082 metabolites against Verticillium dahliae in cotton. Mol. Plant-Microbe Interact. 34:758-769.
  53. Zhou, Y.-H., Zhang, M., Zhu, R.-X., Zhang, J.-Z., Xie, F., Li, X.-B., Chang, W.-Q., Wang, X.-N., Zhao, Z.-T. and Lou, H.-X. 2016. Heptaketides from an endolichenic fungus Biatriospora sp. and their antifungal activity. J. Nat. Prod. 79:2149-2157.